analyze data to create visualizations for BI systems /
نام نخستين پديدآور
Ossama Embarak.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
[Berkeley, CA] :
نام ناشر، پخش کننده و غيره
Apress,
تاریخ نشرو بخش و غیره
2018.
مشخصات ظاهری
نام خاص و کميت اثر
1 online resource
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references and index.
یادداشتهای مربوط به مندرجات
متن يادداشت
Intro; Table of Contents; About the Author; About the Technical Reviewers; Introduction; Chapter 1: Introduction to Data Science with Python; The Stages of Data Science; Why Python?; Basic Features of Python; Python Learning Resources; Python Environment and Editors; Portable Python Editors (No Installation Required); Azure Notebooks; Offline and Desktop Python Editors; The Basics of Python Programming; Basic Syntax; Lines and Indentation; Multiline Statements; Quotation Marks in Python; Multiple Statements on a Single Line; Read Data from Users; Declaring Variables and Assigning Values
متن يادداشت
Chapter 2: The Importance of Data Visualization in Business IntelligenceShifting from Input to Output; Why Is Data Visualization Important?; Why Do Modern Businesses Need Data Visualization?; The Future of Data Visualization; How Data Visualization Is Used for Business Decision-Making; Faster Responses; Simplicity; Easier Pattern Visualization; Team Involvement; Unify Interpretation; Introducing Data Visualization Techniques; Loading Libraries; Popular Libraries for Data Visualization in Python; Matplotlib; Seaborn; Plotly; Geoplotlib; Pandas; Introducing Plots in Python; Summary
متن يادداشت
Exercises and AnswersChapter 3: Data Collection Structures; Lists; Creating Lists; Accessing Values in Lists; Adding and Updating Lists; Deleting List Elements; Basic List Operations; Indexing, Slicing, and Matrices; Built-in List Functions and Methods; List Functions; List Methods; List Sorting and Traversing; Lists and Strings; Parsing Lines; Aliasing; Dictionaries; Creating Dictionaries; Updating and Accessing Values in Dictionaries; Deleting Dictionary Elements; Built-in Dictionary Functions; Built-in Dictionary Methods; Tuples; Creating Tuples; Concatenating Tuples
متن يادداشت
Multiple AssignsVariable Names and Keywords; Statements and Expressions; Basic Operators in Python; Arithmetic Operators; Relational Operators; Assign Operators; Logical Operators; Python Comments; Formatting Strings; Conversion Types; The Replacement Field, {}; The Date and Time Module; Time Module Methods; Python Calendar Module; Fundamental Python Programming Techniques; Selection Statements; Iteration Statements; The Use of Break, Continues, and Pass Statements; try and except; String Processing; String Special Operators; String Slicing and Concatenation
متن يادداشت
String Conversions and Formatting SymbolsLoop Through String; Python String Functions and Methods; The in Operator; Parsing and Extracting Strings; Tabular Data and Data Formats; Python Pandas Data Science Library; A Pandas Series; A Pandas Data Frame; A Pandas Panels; Python Lambdas and the Numpy Library; The map() Function; The filter() Function; The reduce () Function; Python Numpy Package; Data Cleaning and Manipulation Techniques; Abstraction of the Series and Data Frame; Running Basic Inferential Analyses; Summary; Exercises and Answers
بدون عنوان
0
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Look at Python from a data science point of view and learn proven techniques for data visualization as used in making critical business decisions. Starting with an introduction to data science with Python, you will take a closer look at the Python environment and get acquainted with editors such as Jupyter Notebook and Spyder. After going through a primer on Python programming, you will grasp fundamental Python programming techniques used in data science. Moving on to data visualization, you will see how it caters to modern business needs and forms a key factor in decision-making. You will also take a look at some popular data visualization libraries in Python. Shifting focus to data structures, you will learn the various aspects of data structures from a data science perspective. You will then work with file I/O and regular expressions in Python, followed by gathering and cleaning data. Moving on to exploring and analyzing data, you will look at advanced data structures in Python. Then, you will take a deep dive into data visualization techniques, going through a number of plotting systems in Python. In conclusion, you will complete a detailed case study, where you'll get a chance to revisit the concepts you've covered so far. What You Will Learn Use Python programming techniques for data science Master data collections in Python Create engaging visualizations for BI systems Deploy effective strategies for gathering and cleaning data Integrate the Seaborn and Matplotlib plotting systems Who This Book Is For Developers with basic Python programming knowledge looking to adopt key strategies for data analysis and visualizations using Python.--Provided by publisher.
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Springer Nature
شماره انبار
com.springer.onix.9781484241097
ویراست دیگر از اثر در قالب دیگر رسانه
عنوان
Data analysis and visualization using Python.
شماره استاندارد بين المللي کتاب و موسيقي
9781484241080
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Data mining.
موضوع مستند نشده
Programming languages (Electronic computers)
موضوع مستند نشده
Python (Computer program language)
موضوع مستند نشده
Qualitative research-- Methodology.
موضوع مستند نشده
Computer programming-- software development.
موضوع مستند نشده
COMPUTERS-- Programming Languages-- Python.
موضوع مستند نشده
Data mining.
موضوع مستند نشده
Databases.
موضوع مستند نشده
Programming & scripting languages: general.
موضوع مستند نشده
Programming languages (Electronic computers)
موضوع مستند نشده
Python (Computer program language)
موضوع مستند نشده
Qualitative research-- Methodology.
مقوله موضوعی
موضوع مستند نشده
COM-- 051360
موضوع مستند نشده
UMX
موضوع مستند نشده
UMX
رده بندی ديویی
شماره
005
.
133
ويراست
23
رده بندی کنگره
شماره رده
QA76
.
73
.
P98
نشانه اثر
E43
2018eb
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )