• صفحه اصلی
  • جستجوی پیشرفته
  • فهرست کتابخانه ها
  • درباره پایگاه
  • ارتباط با ما
  • تاریخچه

عنوان
Textual entailment for modern standard Arabic

پدید آورنده
Alabbas, Maytham Abualhail Shahed

موضوع
Textual Entailment ; Dependency Parsing ; Arabic tagging ; Natural Language Inference ; Arabic Natural Language Processing

رده

کتابخانه
مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

محل استقرار
استان: قم ـ شهر: قم

مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

تماس با کتابخانه : 32910706-025

شماره کتابشناسی ملی

شماره
TLets588141

عنوان و نام پديدآور

عنوان اصلي
Textual entailment for modern standard Arabic
نام عام مواد
[Thesis]
نام نخستين پديدآور
Alabbas, Maytham Abualhail Shahed
نام ساير پديدآوران
Ramsay, Allan; Somers, Harold

وضعیت نشر و پخش و غیره

نام ناشر، پخش کننده و غيره
University of Manchester
تاریخ نشرو بخش و غیره
2013

یادداشتهای مربوط به پایان نامه ها

جزئيات پايان نامه و نوع درجه آن
Thesis (Ph.D.)
امتياز متن
2013

یادداشتهای مربوط به خلاصه یا چکیده

متن يادداشت
This thesis explores a range of approaches to the task of recognising textual entailment (RTE), i.e. determining whether one text snippet entails another, for Arabic, where we are faced with an exceptional level of lexical and structural ambiguity. To the best of our knowledge, this is the first attempt to carry out this task for Arabic. Tree edit distance (TED) has been widely used as a component of natural language processing (NLP) systems that attempt to achieve the goal above, with the distance between pairs of dependency trees being taken as a measure of the likelihood that one entails the other. Such a technique relies on having accurate linguistic analyses. Obtaining such analyses for Arabic is notoriously difficult. To overcome these problems we have investigated strategies for improving tagging and parsing depending on system combination techniques. These strategies lead to substantially better performance than any of the contributing tools. We describe also a semi-automatic technique for creating a first dataset for RTE for Arabic using an extension of the 'headline-lead paragraph' technique because there are, again to the best of our knowledge, no such datasets available. We sketch the difficulties inherent in volunteer annotators-based judgment, and describe a regime to ameliorate some of these. The major contribution of this thesis is the introduction of two ways of improving the standard TED: (i) we present a novel approach, extended TED (ETED), for extending the standard TED algorithm for calculating the distance between two trees by allowing operations to apply to subtrees, rather than just to single nodes. This leads to useful improvements over the performance of the standard TED for determining entailment. The key here is that subtrees tend to correspond to single information units. By treating operations on subtrees as less costly than the corresponding set of individual node operations, ETED concentrates on entire information units, which are a more appropriate granularity than individual words for considering entailment relations; and (ii) we use the artificial bee colony (ABC) algorithm to automatically estimate the cost of edit operations for single nodes and subtrees and to determine thresholds, since assigning an appropriate cost to each edit operation manually can become a tricky task.The current findings are encouraging. These extensions can substantially affect the F-score and accuracy and achieve a better RTE model when compared with a number of string-based algorithms and the standard TED approaches. The relative performance of the standard techniques on our Arabic test set replicates the results reported for these techniques for English test sets. We have also applied ETED with ABC to the English RTE2 test set, where it again outperforms the standard TED.

موضوع (اسم عام یاعبارت اسمی عام)

موضوع مستند نشده
Textual Entailment ; Dependency Parsing ; Arabic tagging ; Natural Language Inference ; Arabic Natural Language Processing

نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )

مستند نام اشخاص تاييد نشده
Alabbas, Maytham Abualhail Shahed

نام شخص - ( مسئولیت معنوی درجه دوم )

مستند نام اشخاص تاييد نشده
Ramsay, Allan; Somers, Harold

شناسه افزوده (تنالگان)

مستند نام تنالگان تاييد نشده
University of Manchester

دسترسی و محل الکترونیکی

نام الکترونيکي
 مطالعه متن کتاب 

وضعیت انتشار

فرمت انتشار
p

اطلاعات رکورد کتابشناسی

نوع ماده
[Thesis]
کد کاربرگه
276903

اطلاعات دسترسی رکورد

سطح دسترسي
a
تكميل شده
Y

پیشنهاد / گزارش اشکال

اخطار! اطلاعات را با دقت وارد کنید
ارسال انصراف
این پایگاه با مشارکت موسسه علمی - فرهنگی دارالحدیث و مرکز تحقیقات کامپیوتری علوم اسلامی (نور) اداره می شود
مسئولیت صحت اطلاعات بر عهده کتابخانه ها و حقوق معنوی اطلاعات نیز متعلق به آنها است
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال