• صفحه اصلی
  • جستجوی پیشرفته
  • فهرست کتابخانه ها
  • درباره پایگاه
  • ارتباط با ما
  • تاریخچه
  • ورود / ثبت نام

عنوان
Complete noncompact CMC surfaces in hyperbolic 3-space

پدید آورنده
Cuschieri, Thomas

موضوع
QA Mathematics

رده

کتابخانه
مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

محل استقرار
استان: قم ـ شهر: قم

مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

تماس با کتابخانه : 32910706-025

شماره کتابشناسی ملی

شماره
TLets547291

عنوان و نام پديدآور

عنوان اصلي
Complete noncompact CMC surfaces in hyperbolic 3-space
نام عام مواد
[Thesis]
نام نخستين پديدآور
Cuschieri, Thomas

وضعیت نشر و پخش و غیره

نام ناشر، پخش کننده و غيره
University of Warwick
تاریخ نشرو بخش و غیره
2009

یادداشتهای مربوط به پایان نامه ها

جزئيات پايان نامه و نوع درجه آن
Thesis (Ph.D.)
امتياز متن
2009

یادداشتهای مربوط به خلاصه یا چکیده

متن يادداشت
In this thesis we study the asymptotic Plateau problem for surfaces with constant mean curvature (CMC) in hyperbolic 3-space H3. We give a new, geometrically transparent proof of the existence of a CMC surface spanning any given Jordan curve on the sphere at infinity of H3, for mean curvature lying in the range (-1,1). Our proof does not require methods from geometric measure theory, and yields an immersed disk as solution. We then study the dependence of the solution surface on the boundary data. We view the set of H-surfaces (CMC surfaces with mean curvature equal to H) as consisting of the conformal H-harmonic maps. We therefore begin by showing smooth dependence on boundary data for H-harmonic maps (with |H| < 1) which solve a Dirichlet problem at infinity. This is achieved by showing that the linearised H-harmonic map operator is invertible as a map between appropriate function spaces. Finally we show smooth dependence on boundary data for H-surfaces which lie in a neighbourhood of the totally umbilic spherical caps {H}. This is achieved by studying the mapping properties of the so-called conformality operator. We use methods from complex geometry to show that the linearisation of this operator at a cap H is an isomorphism for all H ∈ (−1, 1).

موضوع (اسم عام یاعبارت اسمی عام)

موضوع مستند نشده
QA Mathematics

نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )

مستند نام اشخاص تاييد نشده
Cuschieri, Thomas

شناسه افزوده (تنالگان)

مستند نام تنالگان تاييد نشده
University of Warwick

دسترسی و محل الکترونیکی

نام الکترونيکي
 مطالعه متن کتاب 

وضعیت انتشار

فرمت انتشار
p

اطلاعات رکورد کتابشناسی

نوع ماده
[Thesis]
کد کاربرگه
276903

اطلاعات دسترسی رکورد

سطح دسترسي
a
تكميل شده
Y

پیشنهاد / گزارش اشکال

اخطار! اطلاعات را با دقت وارد کنید
ارسال انصراف
این پایگاه با مشارکت موسسه علمی - فرهنگی دارالحدیث و مرکز تحقیقات کامپیوتری علوم اسلامی (نور) اداره می شود
مسئولیت صحت اطلاعات بر عهده کتابخانه ها و حقوق معنوی اطلاعات نیز متعلق به آنها است
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال