1 Fourier series, integral theorem, and transforms: a review --; 1.1 Fourier series --; 1.2 Fourier exponential series --; 1.3 The Fourier integral theorem --; 1.4 Odd and even functions --; 1.5 The Fourier transform --; 1.6 The Fourier sine and cosine transforms --; 1.7 The Laplace transform --; 1.8 Laplace transform properties and pairs --; 1.9 Transfer functions and convolution --; Summary --; Problems --; 2 The Fourier transform. Convolution of analogue signals --; 2.1 Duality --; 2.2 Further properties of the Fourier transform --; 2.3 Comparison with the Laplace transform, and the existence of the Fourier transform --; 2.4 Transforming using a limit process --; 2.5 Transformation and inversion using duality and other properties --; 2.6 Some frequently occurring functions and their transforms --; 2.7 Further Fourier transform pairs --; 2.8 Graphical aspects of convolution --; Summary --; Problems --; 3 Discrete signals and transforms. The Z-transform and discrete convolution --; 3.1 Sampling, quantization and encoding --; 3.2 Sampling and 'ideal' sampling models --; 3.3 The Fourier transform of a sampled function --; 3.4 The spectrum of an 'ideally sampled' function --; 3.5 Aliasing --; 3.6 Transform and inversion sums; truncation --; 3.7 Windowing: band-limited signals and signal energy --; 3.8 The Laplace transform of a sampled signal --; 3.9 The Z-transform --; 3.10 Input-output systems and transfer functions --; 3.11 Properties of the Z-transform --; 3.12 Z-transform pairs --; 3.13 Inversion --; 3.14 Discrete convolution --; Summary --; Problems --; 4 Difference equations and the Z-transforms --; 4.1 Forward and backward difference operators --; 4.2 The approximation of a differential equation --; 4.3 Ladder networks --; 4.4 Bending in beams: trial methods of solution --; 4.5 Transforming a second-order forward difference equation --; 4.6 The characteristic polynomial and the terms to be inverted --; 4.7 The case when the characteristic polynomial has real roots --; 4.8 The case when the characteristic polynomial has complex roots --; 4.9 The case when the characteristic equation has repeated roots --; 4.10 Difference equations of order N> 2 --; 4.11 A backward difference equation --; 4.12 A second-order equation: comparison of the two methods --; Summary --; Problems --; 5 The discrete Fourier transform --; 5.1 Approximating the exponential Fourier series --; 5.2 Definition of the discrete Fourier transform --; 5.3 Establishing the inverse --; 5.4 Inversion by conjugation --; 5.5 Properties of the discrete Fourier transform --; 5.6 Discrete correlation --; 5.7 Parseval's theorem --; 5.8 A note on sampling in the frequency domain, and a further comment on window functions --; 5.9 Computational effort and the discrete Fourier transform --; Summary --; Problems --; 6 Simplification and factorization of the discrete Fourier transform matrix --; 6.1 The coefficient matrix for an eight-point discrete Fourier transform --; 6.2 The permutation matrix and bit-reversal --; 6.3 The output from four two-point discrete Fourier transforms --; 6.4 The output from two four-point discrete Fourier transforms --; 6.5 The output from an eight-point discrete Fourier transform --; 6.6 'Butterfly' calculations --; 6.7 'Twiddle' factors --; 6.8 Economies --; Summary --; Problems --; 7 Fast Fourier transforms --; 7.1 Fast Fourier transform algorithms --; 7.2 Decimation in time for an eight-point discrete Fourier transform: first stage --; 7.3 The second stage: further periodic aspects --; 7.4 The third stage --; 7.5 Construction of a flow graph --; 7.6 Inversion using the same decimation-in-time signal flow graph --; 7.7 Decimation in frequency for an eight-point discrete Fourier transform --; Summary --; Problems --; Appendix A: The Fourier integral theorem --; Appendix B: The Hartley transform --; Appendix C: Further reading.
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This text provides a thorough introduction to discrete transform techniques aimed at engineering students. Worked examples and illustrations are provided throughout the text to enable readers to relate the techniques to practical engineering problems.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Engineering.
موضوع مستند نشده
Mathematics.
رده بندی کنگره
شماره رده
QA601
نشانه اثر
.
B954
1992
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )