Electrons and phonons in layered crystal structures.
نام عام مواد
[Book]
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
[Place of publication not identified]
نام ناشر، پخش کننده و غيره
Springer
تاریخ نشرو بخش و غیره
2014
یادداشتهای مربوط به مندرجات
متن يادداشت
I: Electrons.- A Symmetry Considerations.- 1. Group Theoretical Basis.- 1.1. Symmetry of the Schroedinger Equation.- 1.2. Group Representations.- 1.3. Crystal Point and Space Groups.- 1.3.1. Symmorphic Space Groups.- 1.3.2. The Symmorphic Crystal Space Group D3d3.- 1.3.3. Non-Symmorphic Space Groups.- 1.3.4. The Non-Symmorphic Space Group D6h4.- 1.4. Double Groups and Time Reversal Symmetry.- 2. Symmetrized Basis Functions.- 2.1. Use of a Symmetrized Basis.- 2.2. Symmetry of Plane Waves.- 2.3. Group Projection Operators.- 2.4. Example for Symmetrized Plane Waves: Non-Symmorphic Space Group D6h4.- 3. Symmetry Classification of Layer Compounds.- 3.1. Structural Aspects.- 3.2. Group Analysis of Some Layer Compounds.- 3.3. Description of Eight Space Groups of Layer Compounds.- References.- B Methods Used for Calculating Band Structures of Layered Materials.- 1. The Tight-Binding Method (LCAO).- 1.1. Original Formulation of the Tight-Binding Method.- 1.2. The Bromley-Murray Scheme.- 1.3. The Slater-Koster Interpolation Scheme.- 2. The Augmented-Plane-Wave Method (APW).- 2.1. Basic Concepts of the Augmented-Plane-Wave Method.- 2.2. Construction of the Crystal Potential.- 2.3. Calculation of the Energy Eigenvalues.- 2.4. Comments on Computational Details.- 3. The Empirical Pseudopotential Method (EPM).- 3.1. General Considerations of the Pseudopotential Method.- 3.2. The Local Empirical Pseudopotential Method.- 3.3. The Non-Local Empirical Pseudopotential Method.- 3.4. Comments on Fitting Procedures.- 4. The Green's Function Method (KKR).- 4.1. Variational Procedure for Simple Structures.- 4.2. Generalization to Complex Crystals.- 4.3. Calculation of Structure Factors.- 5. The Method of Linear Combination of Muffin-Tin Orbitals (LCMTO).- 5.1. Mathematical Formulation of Muffin-Tin Orbitals.- 5.2. Variational Scheme Using a Linear Combination of Muffin-Tin Orbitals.- 5.3. Comments on Practical Calculations.- 6. The Layer Transfer-Matrix Method (LTM).- 6.1. Derivation of an Eigenvalue Equation.- 6.2. Calculation of the Transfer Matrix Q.- 6.3. Formulation of the Structure Factors.- 6.4. Mathematical Details.- 7. The Orthogonalized Plane Wave Method (OPW).- 7.1. General Formulation of the OPW Method.- 7.2. Self-Consistent OPW Calculations.- 7.3. Combined OPW-Tight Binding Calculations.- 8. Conclusions.- References.- C Electronic Structure of Some Layer Compounds.- 1. Transition Metal Layer Compounds.- 1.1. Compounds with Octahedral Arrangement of the Cations.- 1.1.1. The Group IVB Transition Metal Chalcogenides.- 1.1.2. The Group VB Transition Metal Dichalcogenide TaS2.- 1.2. Compounds with Trigonal Prismatic Arrangement of the Cations.- 1.2.1. The Group VB Transition Metal Dichalcogenides.- 1.2.2. The Group VIB Transition Metal Dichalcogenides.- 2. Non-Transition Metal Layer Compounds.- 2.1. Compounds with Octahedral Arrangement of the Cations.- 2.1.1. The Tin Dichalcogenides SnS2 and SnSe2.- 2.1.2. The Five-Layer Compound Bi2Te3.- 2.1.3. Lead Iodide PbI2.- 2.1.4. Bismuth Iodide BiI3.- 2.2. Compounds with Trigonal Prismatic Arrangement of the Cations.- 2.2.1. The Gallium Chalcogenides.- 2.3. Hexagonal Network Structures.- 2.3.1. Graphite.- 2.3.2. Boron Nitride.- References.- Acknowledgment.- List of Symbols - Chapter A.- List of Symbols - Chapter B.- List of Symbols - Chapter C.- II: Phonons.- Infrared and Raman Investigations of Long-Wavelength Phonons in Layered Materials.- 1. Introduction.- 2. Structures and Symmetry.- 2.1. Families of Layered Materials.- 2.1.1. GaSe.- 2.1.2. MoS2.- 2.1.3. CdI2.- 2.1.4. Graphite.- 2.1.5. As2S3.- 2.1.6. Sb2S3.- 2.1.7. Bi2Te3.- 2.2. Group Theory and the Correlation Method.- 2.3. Correlation Diagrams.- 2.3.1. ?-GaS.- 2.3.2. ?-GaSe.- 2.3.3. ?-GaSe.- 2.3.4. 3R- and 3T-MoS2.- 2.3.5. 2H-CdI2.- 2.3.6. 4H-CdI2.- 2.3.7. Graphite.- 2.3.8. As2S3.- 2.3.9. Sb2S3.- 2.3.10. Bi2Te3.- 3. Infrared Absorption and Raman Scattering.- 3.1. Selection Rules for Infrared Absorption.- 3.2. Analysis of Infrared Spectra.- 3.3. Effective Charge.- 3.4. Experimental Configurations in Raman Scattering.- 3.5. Raman Selection Rules and Scattered Light Intensity.- 4. Normal Vibrations in Layered Materials.- 4.1. General Properties.- 4.2. Linear-Chain Model.- 5. Experimental Investigations.- 5.1. GaSe Family.- 5.2. MoS2 Family.- 5.3. CdI2 Family.- 5.4. Graphite.- 5.5. As2S3, Sb2S3, and Bi2Te3 Families.- 5.6. Chemical Bonding.- Acknowledgments.- List of Symbols.- References.- Neutron Scattering and Lattice Dynamics of Materials with Layered Structures.- 1. Lattice Dynamics and Inelastic Neutron Scattering.- 1.1. Lattice Dynamics in the Harmonic Approximation.- 1.2. Model of Lattice Dynamics.- 1.3. Inelastic Scattering of Neutrons.- 2. Atomic Vibrations in Layered Compounds.- 3. Neutron Scattering Experiments on Layered Compounds.- 3.1. Introduction.- 3.2. Graphite.- 3.3. Transition Metal Dichalcogenides (TX2).- 3.3.1. MoS2 (2H).- 3.3.2. NbSe2.- 3.3.3. TiSe2.- 3.4. GaSe.- 3.5. PbI2.- 3.6. Iodine.- Acknowledgment.- List of Symbols.- References.- Index of Layered Materials.