I. General remarks --; II. Notations --; III. Lie algebras: some basics --; 1 Operator calculus and Appell systems --; I. Boson calculus --; II. Holomorphic canonical calculus --; III. Canonical Appell systems --; 2 Representations of Lie groups --; I. Coordinates on Lie groups --; II. Dual representations --; III. Matrix elements --; IV. Induced representations and homogeneous spaces --; 3 General Appell systems --; I. Convolution and stochastic processes --; II. Stochastic processes on Lie groups --; III. Appell systems on Lie groups --; 4 Canonical systems in several variables --; I. Homogeneous spaces and Cartan decompositions --; II. Induced representation and coherent states --; III. Orthogonal polynomials in several variables --; 5 Algebras with discrete spectrum --; I. Calculus on groups: review of the theory --; II. Finite-difference algebra --; III. q-HW algebra and basic hypergeometric functions --; IV. su2 and Krawtchouk polynomials --; V. e2 and Lommel polynomials --; 6 Nilpotent and solvable algebras --; I. Heisenberg algebras --; II. Type-H Lie algebras --; III. Upper-triangular matrices --; IV. Affine and Euclidean algebras --; 7 Hermitian symmetric spaces --; I. Basic structures --; II. Space of rectangular matrices --; III. Space of skew-symmetric matrices --; IV. Space of symmetric matrices --; 8 Properties of matrix elements --; I. Addition formulas --; II. Recurrences --; III. Quotient representations and summation formulas --; 9 Symbolic computations --; I. Computing the pi-matrices --; II. Adjoint group --; III. Recursive computation of matrix elements --; IV. Symbolic computation of Appell systems --; MAPLE output and procedures --; References.