Operator Algebras and Quantum Statistical Mechanics :
نام عام مواد
[Book]
ساير اطلاعات عنواني
Equilibrium States Models in Quantum Statistical Mechanics
نام نخستين پديدآور
by Ola Bratteli, Derek W. Robinson.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Berlin, Heidelberg
نام ناشر، پخش کننده و غيره
Springer Berlin Heidelberg
تاریخ نشرو بخش و غیره
1981
مشخصات ظاهری
نام خاص و کميت اثر
(xi, 507 pages)
فروست
عنوان فروست
Texts and monographs in physics.
یادداشتهای مربوط به مندرجات
متن يادداشت
Volume II --; States in Quantum Statistical Mechanics --; Models of Quantum Statistical Mechanics --; References --; Books and Monographs --; Articles --; List of Symbols --; Corrigenda to Volume I.
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
In this chapter, and the following one, we examine various applications of C*-algebras and their states to statistical mechanics. Principally we analyze the structural properties of the equilibrium states of quantum systems con sisting of a large number of particles. In Chapter 1 we argued that this leads to the study of states of infinite-particle systems as an initial approximation. There are two approaches to this study which are to a large extent comple mentary. The first approach begins with the specific description of finite systems and their equilibrium states provided by quantum statistical mechanics. One then rephrases this description in an algebraic language which identifies the equilibrium states as states over a quasi-local C*-algebra generated by sub algebras corresponding to the observables of spatial subsystems. Finally, one attempts to calculate an approximation of these states by taking their limit as the volume of the system tends to infinity, the so-called thermodynamic limit. The infinite-volume equilibrium states obtained in this manner provide the data for the calculation of bulk properties of the matter under considera tion as functions of the thermodynamic variables. By this we mean properties such as the particle density, or specific heat, as functions of the temperature and chemical potential, etc. In fact, the infinite-volume data provides a much more detailed, even microscopic, description of the equilibrium phenomena although one is only generally interested in the bulk properties and their fluctuations.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Mathematical physics.
موضوع مستند نشده
Physics.
رده بندی کنگره
شماره رده
QA326
نشانه اثر
.
B965
1981
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )