یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references and index
یادداشتهای مربوط به مندرجات
متن يادداشت
Preface -- Algebras on graphs -- Representations and operator algebras of graph groupoids -- Operator theory on graphs -- Fractals on graph groupoids -- Entropy theory on graphs -- Jones Index Theory on graph groupoids -- Network theory on graphs -- K-theory on graphs -- Index
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
"Preface In this book, we consider algebra on directed graphs. From combinatorial objects, direct graphs, we establish corresponding algebraic objects which become groupoids. We call such groupoids graph groupoids. Connected with groupoid theory, we investigate the properties of graph groupoids. From this investigation, we can realize that graph groupoids act like the free groups in group theory. In other words, the study of graph groupoids is understood as groupoidal version of free-group theory. As application, we observe how graph groupoids are playing their role in different mathematical and scientific areas, including general groupoid theory, representation theory, automata theory, operator algebra (von Neumann algebra theory, C*-algebra theory, free probability, and index theory), noncommutative dynamical systems (groupoid dynamical systems), operator theory (spectral theory), fractal theory, information theory (entropy theory), and network theory, etc. We can check all operated groupoids (for instance, groupoid sums, product groupoids, quotient groupoids, etc) of graph groupoids are graph groupoids, too. This means that the study of operated groupoids of graph groupoids becomes nothing but studying other graph groupoids. It makes us easy to handle graph-groupoid related structures"--
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Groupoids
موضوع مستند نشده
Operator theory
رده بندی ديویی
شماره
511/
.
54
ويراست
23
رده بندی کنگره
شماره رده
QA181
نشانه اثر
.
C46
2014
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )