• صفحه اصلی
  • جستجوی پیشرفته
  • فهرست کتابخانه ها
  • درباره پایگاه
  • ارتباط با ما
  • تاریخچه

عنوان
Random walk and the heat equation /

پدید آورنده
Gregory F. Lawler

موضوع
Heat equation,Random walks (Mathematics)

رده
QA274
.
73
.
L385
2010

کتابخانه
مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

محل استقرار
استان: قم ـ شهر: قم

مرکز و کتابخانه مطالعات اسلامی به زبان‌های اروپایی

تماس با کتابخانه : 32910706-025

شابک

شابک
0821848291 (alk. paper)
شابک
9780821848296 (alk. paper)

شماره کتابشناسی ملی

شماره
dltt

عنوان و نام پديدآور

عنوان اصلي
Random walk and the heat equation /
نام عام مواد
[Book]
نام نخستين پديدآور
Gregory F. Lawler

وضعیت نشر و پخش و غیره

محل نشرو پخش و غیره
Providence, R.I. :
نام ناشر، پخش کننده و غيره
American Mathematical Society,
تاریخ نشرو بخش و غیره
c2010

مشخصات ظاهری

نام خاص و کميت اثر
ix, 156 p. :
ساير جزييات
ill. ;
ابعاد
22 cm

فروست

عنوان فروست
Student mathematical library ;
مشخصه جلد
v. 55

یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر

متن يادداشت
Includes bibliographical references

یادداشتهای مربوط به مندرجات

متن يادداشت
Chapter 1. Random Walk and Discrete Heat Equation -- 1.1. Simple random walk -- 1.2. Boundary value problems -- 1.3. Heat equation -- 1.4. Expected time to escape -- 1.5. Space of harmonic functions -- 1.6. Exercises -- Chapter 2. Brownian Motion and the Heat Equation -- 2.1. Brownian motion -- 2.2. Harmonic functions -- 2.3. Dirichlet problem -- 2.4. Heat equation -- 2.5. Bounded domain -- 2.6. More on harmonic functions -- 2.7. Constructing Brownian motion -- 2.8. Exercises -- Chapter 3. Martingales -- 3.1. Examples -- 3.2. Conditional expectation -- 3.3. Definition of martingale -- 3.4. Optional sampling theorem -- 3.5. Martingale convergence theorem -- 3.6. Uniform integrability -- 3.7. Exercises -- Chapter 4. Fractal Dimension -- 4.1. Box dimension -- 4.2. Cantor measure -- 4.3. Hausdorff measure and dimension -- 4.4. Exercises
بدون عنوان
0

یادداشتهای مربوط به خلاصه یا چکیده

متن يادداشت
"The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective." "The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set." "The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas."--BOOK JACKET
متن يادداشت
"The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective." "The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set." "The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas."--BOOK JACKET

موضوع (اسم عام یاعبارت اسمی عام)

موضوع مستند نشده
Heat equation
موضوع مستند نشده
Random walks (Mathematics)

رده بندی ديویی

شماره
519
.
2/82
ويراست
22

رده بندی کنگره

شماره رده
QA274
.
73
شماره رده
QA274
.
73
نشانه اثر
.
L385
2010
نشانه اثر
.
L385
2010

نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )

مستند نام اشخاص تاييد نشده
Lawler, Gregory F.,1955-

مبدا اصلی

تاريخ عمليات
20110303095809.0

دسترسی و محل الکترونیکی

نام الکترونيکي
 مطالعه متن کتاب 

اطلاعات رکورد کتابشناسی

نوع ماده
[Book]

اطلاعات دسترسی رکورد

تكميل شده
Y

پیشنهاد / گزارش اشکال

اخطار! اطلاعات را با دقت وارد کنید
ارسال انصراف
این پایگاه با مشارکت موسسه علمی - فرهنگی دارالحدیث و مرکز تحقیقات کامپیوتری علوم اسلامی (نور) اداره می شود
مسئولیت صحت اطلاعات بر عهده کتابخانه ها و حقوق معنوی اطلاعات نیز متعلق به آنها است
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال