in honor of Murray Gerstenhaber and Jim Stasheff /
نام نخستين پديدآور
Alberto S. Cattaneo, Anthony Giaquinto, Ping Xu, editors
مشخصات ظاهری
نام خاص و کميت اثر
1 online resource (xv, 362 pages) :
ساير جزييات
color portraits
فروست
عنوان فروست
Progress in mathematics ;
مشخصه جلد
v. 287
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references
یادداشتهای مربوط به مندرجات
متن يادداشت
Higher Structures in Geometry and Physics; Foreword; Preface; Contents; List of Contributors; Topics in Algebraic Deformation Theory; Origins and Breadth of the Theory of Higher Homotopies; The Deformation Philosophy, Quantization and Noncommutative Space-Time Structures; Differential Geometry of Gerbes and Differential Forms; Symplectic Connections of Ricci Type and Star Products; Effective Batalin -- Vilkovisky Theories, Equivariant Configuration Spaces and Cyclic Chains; Noncommutative Calculus and the Gauss -- Manin Connection; The Lie Algebra Perturbation Lemma
متن يادداشت
Twisting Elements in Homotopy G-AlgebrasHomological Perturbation Theory and Homological Mirror Symmetry; Categorification of Acyclic Cluster Algebras: An Introduction; Poisson and Symplectic Functions in Lie Algebroid Theory; The Diagonal of the Stasheff Polytope; Permutahedra, HKR Isomorphism and Polydifferential Gerstenhaber -- Schack Complex; Applications de la bi-quantification à la théorie de Lie; Higher Homotopy Hopf Algebras Found: A Ten-Year Retrospective
بدون عنوان
0
بدون عنوان
8
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This book is centered around higher algebraic structures stemming from the work of Murray Gerstenhaber and Jim Stasheff that are now ubiquitous in various areas of mathematics-- such as algebra, algebraic topology, differential geometry, algebraic geometry, mathematical physics-- and in theoretical physics such as quantum field theory and string theory. These higher algebraic structures provide a common language essential in the study of deformation quantization, theory of algebroids and groupoids, symplectic field theory, and much more. Each contribution in this volume expands on the ideas of