Hamiltonian Systems with Three or More Degrees of Freedom
نام عام مواد
[Book]
نام نخستين پديدآور
edited by Carles Simó.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Dordrecht :
نام ناشر، پخش کننده و غيره
Imprint: Springer,
تاریخ نشرو بخش و غیره
1999.
فروست
عنوان فروست
NATO ASI Series, Series C:Mathematical and Physical Sciences,
مشخصه جلد
533
شاپا ي ISSN فروست
1389-2185 ;
یادداشتهای مربوط به مندرجات
متن يادداشت
Lectures -- CONTRIBUTIONS -- List of authors.
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
A survey of current knowledge about Hamiltonian systems with three or more degrees of freedom and related topics. The Hamiltonian systems appearing in most of the applications are non-integrable. Hence methods to prove non-integrability results are presented and the different meaning attributed to non-integrability are discussed. For systems near an integrable one, it can be shown that, under suitable conditions, some parts of the integrable structure, most of the invariant tori, survive. Many of the papers discuss near-integrable systems. From a topological point of view, some singularities must appear in different problems, either caustics, geodesics, moving wavefronts, etc. This is also related to singularities in the projections of invariant objects, and can be used as a signature of these objects. Hyperbolic dynamics appear as a source on unpredictable behaviour and several mechanisms of hyperbolicity are presented. The destruction of tori leads to Aubrey-Mather objects, and this is touched on for a related class of systems. Examples without periodic orbits are constructed, against a classical conjecture. Other topics concern higher dimensional systems, either finite (networks and localised vibrations on them) or infinite, like the quasiperiodic Schrödinger operator or nonlinear hyperbolic PDE displaying quasiperiodic solutions. Most of the applications presented concern celestial mechanics problems, like the asteroid problem, the design of spacecraft orbits, and methods to compute periodic solutions.
ویراست دیگر از اثر در قالب دیگر رسانه
شماره استاندارد بين المللي کتاب و موسيقي
9789401059688
قطعه
عنوان
Springer eBooks
عنوان اصلی به زبان دیگر
عنوان اصلي به زبان ديگر
Proceedings of the NATO Advanced Study Institute, S'Agaro, Spain, June 19-30, 1995
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Differential equations, Partial.
موضوع مستند نشده
Differential Equations.
موضوع مستند نشده
Global analysis.
موضوع مستند نشده
Mathematics.
موضوع مستند نشده
Mechanics.
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )