Geometry and Algebra of Multidimensional Three-Webs
نام عام مواد
[Book]
نام نخستين پديدآور
by Maks A. Akivis, Alexander M. Shelekhov.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Dordrecht :
نام ناشر، پخش کننده و غيره
Imprint: Springer,
تاریخ نشرو بخش و غیره
1992.
فروست
عنوان فروست
Mathematics and Its Applications (Soviet Series),
مشخصه جلد
82
شاپا ي ISSN فروست
0169-6378 ;
یادداشتهای مربوط به مندرجات
متن يادداشت
1 Three-Webs and Geometric Structures Associated with Them -- 1.1 G-Structures, Fibrations and Foliations -- 1.2 Three-Webs on Smooth Manifolds -- 1.3 Geometry of the Tangent Space of a Multidimensional Three-Web -- 1.4 Structure Equations of a Multidimensional Three-Web -- 1.5 Parallelizable and Group Three-Webs -- 1.6 Computation of the Torsion and Curvature Tensors of a Three-Web -- 1.7 The Canonical Chern Connection on a Three-Web -- 1.8 Other Connections Associated with a Three-Web -- 1.9 Subwebs of Multidimensional Three-Webs -- Problems -- Notes -- 2 Algebraic Structures Associated with Three-Webs -- 2.1 Quasigroups and Loops -- 2.2 Configurations in Abstract Three-Webs -- 2.3 Identities in Coordinate Loops and Closure Conditions -- 2.4 Local Differentiable Loops and Their Tangent Algebras -- 2.5 Tangent Algebras of a Multidimensional Three-Web -- 2.6 Canonical Coordinates in a Local Analytic Loop -- 2.7 Algebraic Properties of the Chern Connection -- Problems -- Notes -- 3 Transversally Geodesic and Isoclinic Three-Webs -- 3.1 Transversally Geodesic and Hexagonal Three-Webs -- 3.2 Isoclinic Three-Webs -- 3.3 Grassmann Three-Webs -- 3.4 An Almost Grassmann Structure Associated with a Three-Web. Problems of Grassmannization and Algebraization -- 3.5 Isoclinicly Geodesic Three-Webs. Three-Webs over Algebra -- Problems -- Notes -- 4 The Bol Three-Webs and the Moufang Three-Webs -- 4.1 The Bol Three-Webs -- 4.2 The Isoclinic Bol Three-Webs -- 4.3 The Six-Dimensional Bol Three-Webs -- 4.4 The Moufang Three-Webs -- 4.5 The Moufang Three-Web of Minimal Dimension -- Problems -- Notes -- 5 Closed G-Structures Associated with Three-Webs -- 5.1 Closed G-Structures on a Smooth Manifold -- 5.2 Closed G-Structures Defined by Multidimensional Three-Webs -- 5.3 Four-dimensional Hexagonal Three-Webs -- 5.4 The Closure of The G-Structure Defined by a Multidimensional Hexagonal Three-Web -- 5.5 Three-Webs and Identities in Loops -- Problems -- Notes -- 6 Automorphisms of Three-Webs -- 6.1 The Autotopies of Quasigroups and Three-Webs -- 6.2 Infinitesimal Automorphisms of Three-Webs -- 6.3 Regular Infinitesimal Automorphisms of Three-Webs -- 6.4 G-Webs -- Problems -- Notes -- 7 Geometry of the Fourth Order Differential Neighborhood of a Multidimensional Three-Web -- 7.1 Computation of Covariant Derivatives of the Curvature Tensor of a Three-Web -- 7.2 Internal Mappings in Coordinate Loops of a Three-Web -- 7.3 An Algebraic Characterization of the Tangent W4-Algebra of a Three-Web -- 7.4 Classification of Three-Webs in the Fourth Order Differential Neighborhood -- 7.5 Three-Webs with Elastic Coordinate Loop -- Problems -- Notes -- 8 d-Webs of Codimension r -- 8.1 (n + 1)-Webs on a Manifold of Dimension nr -- 8.2 (n + 1)-Webs on a Grassmann Manifold -- 8.3 (n + 1)-Webs and Almost Grassmann Structures -- 8.4 Transversally Geodesic and Isoclinic (n + 1)-Webs -- 8.5 d-Webs on a Manifold of Dimension nr -- 8.6 The Algebraization Problem for Multidimensional d-Webs -- 8.7 The Rank Problem for d-Webs -- Problems -- Notes -- Appendix A -- Symbols Frequently Used.
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
·Et moi, ... , Ii j'avait so comment en revenir. je One serviee mathematics has rendered the n 'y serais point all~.' human nee. It hal put rommon sense back Jules Verne whme it belongs, on the topmost shelf next to the dusty canister labelled' discarded nonsense'. The series il divergent; therefore we may be EricT. Bell able to do scmething with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nonlineari ties abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sci ences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One ser vice topology has rendered mathematical physics ... '; 'One service logic has rendered computer science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
ویراست دیگر از اثر در قالب دیگر رسانه
شماره استاندارد بين المللي کتاب و موسيقي
9789401050593
قطعه
عنوان
Springer eBooks
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Algebra.
موضوع مستند نشده
Geometry, Algebraic.
موضوع مستند نشده
Global differential geometry.
موضوع مستند نشده
Mathematics.
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )