Text analysis pipelines : towards ad-hoc large scale text mining
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Cham
نام ناشر، پخش کننده و غيره
Springer
تاریخ نشرو بخش و غیره
2015
فروست
عنوان فروست
Lecture notes in computer science ; 3839
یادداشتهای مربوط به عنوان و پدیدآور
متن يادداشت
Henning Wachsmuth
یادداشتهای مربوط به مسئولیت معنوی اثر
متن يادداشت
This monograph proposes a comprehensive and fully automatic approach to designing text analysis pipelines for arbitrary information needs that are optimal in terms of run-time efficiency and that robustly mine relevant information from text of any kind. Based on state-of-the-art techniques from machine learning and other areas of artificial intelligence, novel pipeline construction and execution algorithms are developed and implemented in prototypical software. Formal analyses of the algorithms and extensive empirical experiments underline that the proposed approach represents an essential step towards the ad-hoc use of text mining in web search and big data analytics. Both web search and big data analytics aim to fulfill peoples needs for information in an adhoc manner. The information sought for is often hidden in large amounts of natural language text. Instead of simply returning links to potentially relevant texts, leading search and analytics engines have started to directly mine relevant information from the texts. To this end, they execute text analysis pipelines that may consist of several complex information-extraction and text-classification stages. Due to practical requirements of efficiency and robustness, however, the use of text mining has so far been limited to anticipated information needs that can be fulfilled with rather simple, manually constructed pipelines
موضوع (اسم عام یاعبارت اسمی عام)
عنصر شناسه ای
، Data mining
عنصر شناسه ای
، Text processing )Computer science(
عنصر شناسه ای
، Computer science
عنصر شناسه ای
، Computers
رده بندی کنگره
شماره رده
QH
205
.
2
.
T54
2015
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )