یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references and index.
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This monograph introduces a novel and effective approach to counting lattice paths by using the discrete Fourier transform (DFT) as a type of periodic generating function. Utilizing a previously unexplored connection between combinatorics and Fourier analysis, this method will allow readers to move to higher-dimensional lattice path problems with ease. The technique is carefully developed in the first three chapters using the algebraic properties of the DFT, moving from one-dimensional problems to higher dimensions. In the following chapter, the discussion turns to geometric properties of the DFT in order to study the corridor state space. Each chapter poses open-ended questions and exercises to prompt further practice and future research. Two appendices are also provided, which cover complex variables and non-rectangular lattices, thus ensuring the text will be self-contained and serve as a valued reference.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Lattice paths.
موضوع مستند نشده
Fourier transformations.
رده بندی کنگره
شماره رده
QA171
.
5
نشانه اثر
.
A85
2019
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )
مستند نام اشخاص تاييد نشده
Ault, Shaun V., 1979-
نام شخص - (مسئولیت معنوی برابر )
مستند نام اشخاص تاييد نشده
Kicey, Charles.
مبدا اصلی
کشور
ایران
سازمان
University of Tehran. Library of College of Science