• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
یادگیری تقویتی چندعاملی براساس به اشتراک‌گذاری وزن‌دار تجارب به‌صورت تقاضامحور,‮‭Multi-Agent Reinforcement Learning Based on On-Demand Weighted Experience Sharing‬

پدید آورنده
/رویا قاسم‌زاده

موضوع
spets rewef ni edosipe hcae evlos nac ,egareva no ,dohtem desoporp ,sedosipe gninrael gniruD .retsaf hcum etats taht sehcaer dohtem desoporp tub ecnamrofrep ralimis ot egrevnoc yllanif smhtirogla htoB .gninrael etarelecca dna ecneirepxe s'rehto hcae esu nac stnega edosipe gninael emos retfa tub ,gninrael tnemecrofnier tnega-elgnis ot ralimis skrow dohtem desoporp ruo sedosipe gninrael reilrae ni taht wohs stluser latnemirepxE

رده

کتابخانه
University of Tabriz Library, Documentation and Publication Center

محل استقرار
استان: East Azarbaijan ـ شهر: Tabriz

University of Tabriz Library, Documentation and Publication Center

تماس با کتابخانه : 04133294120-04133294118

NATIONAL BIBLIOGRAPHY NUMBER

Number
‭۱۹۸۱۱پ‬

LANGUAGE OF THE ITEM

.Language of Text, Soundtrack etc
per

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
یادگیری تقویتی چندعاملی براساس به اشتراک‌گذاری وزن‌دار تجارب به‌صورت تقاضامحور
Parallel Title Proper
‮‭Multi-Agent Reinforcement Learning Based on On-Demand Weighted Experience Sharing‬
First Statement of Responsibility
/رویا قاسم‌زاده

.PUBLICATION, DISTRIBUTION, ETC

Name of Publisher, Distributor, etc.
: مهندسی برق و کامپیوتر
Date of Publication, Distribution, etc.
، ‮‭۱۳۹۷‬
Name of Manufacturer
، افشار

PHYSICAL DESCRIPTION

Specific Material Designation and Extent of Item
‮‭۶۸‬ص‬

NOTES PERTAINING TO PUBLICATION, DISTRIBUTION, ETC.

Text of Note
چاپی - الکترونیکی

DISSERTATION (THESIS) NOTE

Dissertation or thesis details and type of degree
ارشد
Discipline of degree
مهندسی کامپیوتر گرایش هوش مصنوعی
Date of degree
‮‭۱۳۹۷/۰۶/۲۰‬
Body granting the degree
تبریز

SUMMARY OR ABSTRACT

Text of Note
.Multi-agent systems are distributed systems of independent actors called agents. These systems are able to solve problems that single-agent systems are not capable of. Multi-agent reinforcement learning enables multi-agent systems to learn how to act in a complex environment without prior knowledge. One of the problems in multi-agent reinforcement learning systems is the possibility of improving learning process through agent's interactions. Sharing instantaneous information, sharing episodes and sharing learned policies are some methods of interactions among agents. In this thesis we propose a method for sharing learned policies in simultaneously learning agents that use reinforcement learning, more specifically Q-learning. Whenever an agent wants to choose an action, in case of not having enough experience, asks other agents to share their Q-values in that state. other agents in case of having more experience compared to requesting agent, send a list of Q-values of all possible actions in that state along with their confidence of that values to requesting agent. The requesting agent computes the weighted average of received values and updates its Q-table. Then chooses an action based on its action selection policy

PARALLEL TITLE PROPER

Parallel Title
‮‭Multi-Agent Reinforcement Learning Based on On-Demand Weighted Experience Sharing‬

TOPICAL NAME USED AS SUBJECT

spets rewef ni edosipe hcae evlos nac ,egareva no ,dohtem desoporp ,sedosipe gninrael gniruD .retsaf hcum etats taht sehcaer dohtem desoporp tub ecnamrofrep ralimis ot egrevnoc yllanif smhtirogla htoB .gninrael etarelecca dna ecneirepxe s'rehto hcae esu nac stnega edosipe gninael emos retfa tub ,gninrael tnemecrofnier tnega-elgnis ot ralimis skrow dohtem desoporp ruo sedosipe gninrael reilrae ni taht wohs stluser latnemirepxE

PERSONAL NAME - PRIMARY RESPONSIBILITY

قاسم‌زاده، رویا
Ghasemzadeh,Roya

نمایه‌سازی قبلی

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival