• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Numerical methods in fluid dynamics.

پدید آورنده
M Holt

موضوع

رده

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

INTERNATIONAL STANDARD BOOK NUMBER

(Number (ISBN
3642963706
(Number (ISBN
9783642963704

NATIONAL BIBLIOGRAPHY NUMBER

Number
b576435

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Numerical methods in fluid dynamics.
General Material Designation
[Book]
First Statement of Responsibility
M Holt

.PUBLICATION, DISTRIBUTION, ETC

Place of Publication, Distribution, etc.
[Place of publication not identified]
Name of Publisher, Distributor, etc.
Springer
Date of Publication, Distribution, etc.
2012

CONTENTS NOTE

Text of Note
1. General Introduction.- 1.1 Introduction.- 1.2 Boundary Value Problems and Initial Value Problems.- 1.3 One Dimensional Unsteady Flow Characteristics.- 1.4 Steady Supersonic Plane or Axi-Symmetric Flow. Equations of Motion in Characteristic Form.- 1.5 Basic Concepts Used in Finite Difference Methods.- References.- 2. The Godunov Schemes.- 2.1 The Origins of Godunov's First Scheme.- 2.2 Godunov's First Scheme. One Dimensional Eulerian Equations.- 2.3 Godunov's First Scheme in Two and More Dimensions.- 2.4 Godunov's Second Scheme.- 2.5 The Double Sweep Method.- 2.6 Execution of the Second Scheme on the Intermediate Layer.- 2.7 Boundary Conditions on the Intermediate Layer.- 2.8 Procedure on the Final Layer.- 2.9 Applications of the Second Godunov Scheme.- References.- 3. The BVLR Method.- 3.1 Description of Method for Supersonic Flow.- 3.2 Extensions to Mixed Subsonic-Supersonic Flow. The Blunt Body Problem.- 3.3 The Double Sweep Method for Unsteady Three-Dimensional Flow.- 3.4 Worked Problem. Application to Circular Arc Airfoil.- 3.5 Results and Discussion.- References.- 4. The Method of Characteristics for Three-Dimensional Problems in Gas Dynamics.- 4.1 Introduction.- 4.2 Bicharacteristics Method (Butler).- 4.3 Optimal Characteristics Methods (Bruhn and Haack, Schaetz).- 4.4 Near Characteristics Method (Sauer).- References.- 5. The Method of Integral Relations.- 5.1 Introduction.- 5.2 General Formulation. Model Problem.- 5.3 Flow Past Ellipses.- 5.4 The Supersonic Blunt Body Problem.- 5.5 Transonic Flow.- 5.6 Incompressible Laminar Boundary Layer Equations. Basic Formulation.- 5.7 The Method in the Compressible Case.- 5.8 Laminar Boundary-Layers with Suction or Injection.- 5.9 Extension to Separated Flows.- 5.10 Application to Supersonic Wakes and Base Flows.- 5.11 Application to Three-Dimensional Laminar Boundary Layers.- 5.12 A Modified Form of the Method of Integral Relations.- 5.13 Application to Viscous Supersonic Conical Flows.- 5.14 Extension to Unsteady Laminar Boundary Layers.- Model Problem (Chu and Gong).- References.- 6. Telenin's Method and the Method of Lines.- 6.1 Introduction.- 6.2 Solution of Laplace's Equation by Telenin's Method.- 6.3 Solution of a Model Mixed Type Equation by Telenin's Method.- 6.4 Application of Telenin's Method to the Symmetrical Blunt Body Problem.- 6.5 Extension to Unsymmetrical Blunt Body Flows.- 6.6 Application of Telenin's Method to the Supersonic Yawed Cone Problem.- 6.7 The Method of Lines. General Description.- 6.8 Applications of the Method of Lines.- 6.9 Powell's Method Applied to Two Point Boundary Value Problems.- Telenin's Method. Model Problems.- References.

PERSONAL NAME - PRIMARY RESPONSIBILITY

M Holt

PERSONAL NAME - ALTERNATIVE RESPONSIBILITY

M Holt

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

[Book]

Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival