During the last three decades, seismic anisotropy has evolved from a purely academic research topic into applications in the mainstream of applied geophysics. Today, nobody doubts that the earth is anisotropic and most (if not all) hydrocarbon reservoirs are anisotropic. Since shale accounts for 70% of sedimentary basins and fractures exist in all reservoirs, seismic anisotropy may be even more extensive than we think. Taking anisotropy into account in seismic processing has improved the quality of seismic images, even though it makes seismic processing more challenging since additional parameters are needed. At the same time, fracture characterization using the concept of seismic anisotropy has added value in reservoir characterization, reservoir management, and has increased recovery and optimized well locations. This book and the associated course provide an introduction to the fundamental concepts of seismic fracture characterization by introducing seismic anisotropy, equivalent-medium representation theories of fractured rock and methodologies for extracting fracture parameters from seismic data. We focus on practical applications using extensive field data examples. Includes cast studies demonstrating the applicability, workflow and limitations of this technologyContains physical laboratory 3D experiments where fracture distributions are known, a Middle East fractured carbonate reservoir and a fractured tight gas reservoir. Builds discrete fracture network models incorporating all data. These models should not only be geologically consistent but also geophysically and geomechanically consistent, so that the models can be used to forecast the behaviour and performance of fractured reservoirs.