• الرئیسیة
  • البحث المتقدم
  • قائمة المکتبات
  • حول الموقع
  • اتصل بنا
  • نشأة

عنوان
A vector bundle view of parameter-dependent boundary-value problems

پدید آورنده
Austin, Francis Robert

موضوع
Pure mathematics

رده

کتابخانه
کتابخانه مطالعات اسلامی به زبان های اروپایی

محل استقرار
استان: قم ـ شهر: قم

کتابخانه مطالعات اسلامی به زبان های اروپایی

تماس با کتابخانه : 32910706-025

TLets368417

A vector bundle view of parameter-dependent boundary-value problems
[Thesis]
Austin, Francis Robert

University of Surrey
2001

Thesis (Ph.D.)
2001

This thesis starts by constructing a complex line bundle for a simple 3-parameter family of 2 x 2 Hermitian matrices and explicitly computing its first Chern number. This example illustrates in the simplest possible context the connection between topology and degenerate eigenvalues of matrices. The central part of this thesis then follows. We present a geometric, vector bundle view of a large class of parameter-dependent boundary-value problems. In particular, we consider holomorphic families of linear ordinary differential equation systems on a finite interval which are subjected to prescribed parameter-dependent boundary conditions. The Gardner-Jones bundle, which was introduced for linearized reaction-diffusion equations, is generalized and applied to this abstract class of lambda-dependent boundary-value problems, where lambda is a complex eigenvalue parameter. The fundamental analytical object of such lambda-dependent BVP's is the characteristic determinant, and it is proved that any characteristic determinant on a Jordan curve that contains no eigenvalues of the problem can be characterized geometrically as the determinant of a transition function associated with the generalized Gardner-Jones bundle. The topology of this vector bundle, represented by its first Chern number, then yields precise information about the total number of eigenvalues of the problem in any prescribed subset of the complex lambda-plane. This result shows that the generalized Gardner-Jones bundle is an intrinsic geometric property of such lambda-dependent BVP's. The thesis then applies the generalized Gardner-Jones bundle framework to various examples, including one from hydrodynamic stability theory and the linearized complex Ginzburg-Landau equation. The final parts of the thesis contain exploratory attempts at understanding the geometric structure of some classes of parameter-dependent periodic linear systems and multiparameter linear systems. In the latter case, we explore curvature 2-forms. The thesis ends by summarising the achievements of this work, and discussing the various possible directions and objectives for future investigations.

Pure mathematics

Austin, Francis Robert

University of Surrey

 مطالعه متن کتاب 

p

[Thesis]
276903

a
Y

الاقتراح / اعلان الخلل

تحذیر! دقق في تسجیل المعلومات
ارسال عودة
تتم إدارة هذا الموقع عبر مؤسسة دار الحديث العلمية - الثقافية ومركز البحوث الكمبيوترية للعلوم الإسلامية (نور)
المكتبات هي المسؤولة عن صحة المعلومات كما أن الحقوق المعنوية للمعلومات متعلقة بها
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال