• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History

عنوان
Fog Computing, Deep Learning and Big Data Analytics-Research Directions /

پدید آورنده
C.S.R. Prabhu.

موضوع
Big data.,Cloud computing.,Big data.,Cloud computing.,COMPUTERS-- Computer Literacy.,COMPUTERS-- Computer Science.,COMPUTERS-- Data Processing.,COMPUTERS-- Hardware-- General.,COMPUTERS-- Information Technology.,COMPUTERS-- Machine Theory.,COMPUTERS-- Reference.

رده
QA76
.
585

کتابخانه
Center and Library of Islamic Studies in European Languages

محل استقرار
استان: Qom ـ شهر: Qom

Center and Library of Islamic Studies in European Languages

تماس با کتابخانه : 32910706-025

INTERNATIONAL STANDARD BOOK NUMBER

(Number (ISBN
9789811332098
(Number (ISBN
9789811332104
(Number (ISBN
9811332096
(Number (ISBN
981133210X
Erroneous ISBN
9789811332081
Erroneous ISBN
9811332088

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
Fog Computing, Deep Learning and Big Data Analytics-Research Directions /
General Material Designation
[Book]
First Statement of Responsibility
C.S.R. Prabhu.

.PUBLICATION, DISTRIBUTION, ETC

Place of Publication, Distribution, etc.
Singapore :
Name of Publisher, Distributor, etc.
Springer,
Date of Publication, Distribution, etc.
2019.

PHYSICAL DESCRIPTION

Specific Material Designation and Extent of Item
1 online resource

INTERNAL BIBLIOGRAPHIES/INDEXES NOTE

Text of Note
Includes bibliographical references and index.

CONTENTS NOTE

Text of Note
Intro; Preface; Contents; About the Author; Abstract; 1 Introduction; 1.1 A New Economy Based on IoT Emerging from 2015; 1.1.1 Emergence of IoT; 1.1.2 Smart Cities and IoT; 1.1.3 Stages of IoT and Stakeholders; 1.1.4 Analytics; 1.1.5 Analytics from the Edge to Cloud [179]; 1.1.6 Security and Privacy Issues and Challenges in the Internet of Things (IoT); 1.1.7 Access; 1.1.8 Cost Reduction; 1.1.9 Opportunities and Business Model; 1.1.10 Content and Semantics; 1.1.11 Data-Based Business Models Coming Out of IoT; 1.1.12 Future of IoT; 1.1.13 Big Data Analytics and IoT
Text of Note
1.2 The Technological Challenges of an IoT-Driven Economy1.3 Fog Computing Paradigm as a Solution; 1.4 Definitions of Fog Computing; 1.5 Characteristics of Fog Computing; 1.6 Architectures of Fog Computing; 1.6.1 Cloudlet Architecture [11]; 1.6.2 IoX Architecture; 1.6.3 Local Grid's Fog Computing Platform; 1.6.4 ParStream; 1.6.5 ParaDrop; 1.6.6 Prismatic Vortex; 1.7 Designing a Robust Fog Computing Platform; 1.8 Present Challenges in Designing Fog Computing Platform; 1.9 Platform and Applications; 1.9.1 Components of Fog Computing Platform; 1.9.2 Applications and Case Studies
Text of Note
2 Fog Application Management2.1 Introduction; 2.2 Application Management Approaches; 2.3 Performance; 2.4 Latency-Aware Application Management; 2.5 Distributed Application Development in Fog; 2.6 Distributed Data Flow Approach; 2.6.1 Latency-Aware Fog Application Management; 2.7 Resource Coordination Approaches; 3 Fog Analytics; 3.1 Introduction; 3.2 Fog Computing; 3.3 Stream Data Processing; 3.4 Stream Data Analytics, Big Data Analytics and Fog Computing; 3.4.1 Machine Learning for Big Data, Stream Data and Fog Ecosystem; 3.4.2 Deep Learning Techniques; 3.4.3 Deep Learning and Big Data
Text of Note
3.5 Different Approaches to Fog Analytics3.6 Comparison; 3.7 Cloud Solutions for the Edge Analytics; 4 Fog Security and Privacy; 4.1 Introduction; 4.2 Authentication; 4.3 Privacy Issues; 4.4 User Behaviour Profiling; 4.5 Data Theft by Insider; 4.6 Man-in-the-Middle Attack; 4.7 Failure Recovery and Backup Mechanisms; 5 Research Directions; 5.1 Harnessing Temporal Dimension of IoT Data for Customer Relationship Management (CRM); 5.2 Adding Semantics to IoT Data; 5.3 Towards a Semantic Web of IoT; 5.4 Diversity, Interoperability and Standardization in IoT; 5.5 Data Management Issues in IoT
Text of Note
5.6 Data Provenance5.7 Data Governance and Regulation; 5.8 Context-Aware Resource and Service Provisioning; 5.9 Sustainable and Reliable Fog Computing; 5.10 Interoperability Among Fog Nodes; 5.11 Distributed Processing of Application; 5.12 Power Management Within Fog; 5.13 Multi-tenancy Support in Fog; 5.14 Programming Language and Standards for Fog; 5.15 Simulation in Fog; 5.16 Mobile Fog: Research Opportunities; 5.17 Deploying Deep Learning Integrated with Fog Nodes for Fog Analytics; 5.18 Directions of Research in Interfacing Deep Learning with Big Data Analytics; 6 Conclusion; References
0
8
8
8
8

SUMMARY OR ABSTRACT

Text of Note
This book provides a comprehensive picture of fog computing technology, including of fog architectures, latency aware application management issues with real time requirements, security and privacy issues and fog analytics, in wide ranging application scenarios such as M2M device communication, smart homes, smart vehicles, augmented reality and transportation management. This book explores the research issues involved in the application of traditional shallow machine learning and deep learning techniques to big data analytics. It surveys global research advances in extending the conventional unsupervised or clustering algorithms, extending supervised and semi-supervised algorithms and association rule mining algorithms to big data Scenarios. Further it discusses the deep learning applications of big data analytics to fields of computer vision and speech processing, and describes applications such as semantic indexing and data tagging. Lastly it identifies 25 unsolved research problems and research directions in fog computing, as well as in the context of applying deep learning techniques to big data analytics, such as dimensionality reduction in high-dimensional data and improved formulation of data abstractions along with possible directions for their solutions.

ACQUISITION INFORMATION NOTE

Source for Acquisition/Subscription Address
Springer Nature
Stock Number
com.springer.onix.9789811332098

OTHER EDITION IN ANOTHER MEDIUM

Title
Fog Computing, Deep Learning and Big Data Analytics-Research Directions.
International Standard Book Number
9789811332081

TOPICAL NAME USED AS SUBJECT

Big data.
Cloud computing.
Big data.
Cloud computing.
COMPUTERS-- Computer Literacy.
COMPUTERS-- Computer Science.
COMPUTERS-- Data Processing.
COMPUTERS-- Hardware-- General.
COMPUTERS-- Information Technology.
COMPUTERS-- Machine Theory.
COMPUTERS-- Reference.

(SUBJECT CATEGORY (Provisional

COM-- 013000
COM-- 014000
COM-- 018000
COM-- 032000
COM-- 037000
COM-- 052000
COM-- 067000
UN
UN

DEWEY DECIMAL CLASSIFICATION

Number
004
.
67/82
Edition
23

LIBRARY OF CONGRESS CLASSIFICATION

Class number
QA76
.
585

PERSONAL NAME - PRIMARY RESPONSIBILITY

Prabhu, C. S. R.

ORIGINATING SOURCE

Date of Transaction
20200823234629.0
Cataloguing Rules (Descriptive Conventions))
pn

ELECTRONIC LOCATION AND ACCESS

Electronic name
 مطالعه متن کتاب 

[Book]

Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival