• الرئیسیة
  • البحث المتقدم
  • قائمة المکتبات
  • حول الموقع
  • اتصل بنا
  • نشأة

عنوان
Learning from data streams in evolving environments :

پدید آورنده
Moamar Sayed-Mouchaweh, editor.

موضوع
Big data.,Machine learning.,Automatic control engineering.,Big data.,Communications engineering-- telecommunications.,COMPUTERS-- General.,Data mining.,Machine learning.,Reliability engineering.

رده
Q325
.
5

کتابخانه
کتابخانه مطالعات اسلامی به زبان های اروپایی

محل استقرار
استان: قم ـ شهر: قم

کتابخانه مطالعات اسلامی به زبان های اروپایی

تماس با کتابخانه : 32910706-025

3319898035
9783319898032
3319898027
9783319898025

Learning from data streams in evolving environments :
[Book]
methods and applications /
Moamar Sayed-Mouchaweh, editor.

Cham, Switzerland :
Springer,
[2019]

1 online resource

Studies in big data ;
volume 41

Chapter1: Transfer Learning in Non-Stationary Environments -- Chapter2: A new combination of diversity techniques in ensemble classifiers for handling complex concept drift -- Chapter3: Analyzing and Clustering Pareto-Optimal Objects in Data Streams -- Chapter4: Error-bounded Approximation of Data Stream: Methods and Theories -- Chapter5: Ensemble Dynamics in Non-stationary Data Stream Classification -- Chapter6: Processing Evolving Social Networks for Change Detection based on Centrality Measures -- Chapter7: Large-scale Learning from Data Streams with Apache SAMOA -- Chapter8: Process Mining for Analyzing Customer Relationship Management Systems A Case Study -- Chapter9: Detecting Smooth Cluster Changes in Evolving Graph Sequences -- Chapter10: Efficient Estimation of Dynamic Density Functions with Applications in Data Streams -- Chapter11: A Survey of Methods of Incremental Support Vector Machine Learning -- Chapter12: On Social Network-based Algorithms for Data Stream Clustering.
0

This edited book covers recent advances of techniques, methods and tools treating the problem of learning from data streams generated by evolving non-stationary processes. The goal is to discuss and overview the advanced techniques, methods and tools that are dedicated to manage, exploit and interpret data streams in non-stationary environments. The book includes the required notions, definitions, and background to understand the problem of learning from data streams in non-stationary environments and synthesizes the state-of-the-art in the domain, discussing advanced aspects and concepts and presenting open problems and future challenges in this field. Provides multiple examples to facilitate the understanding data streams in non-stationary environments; Presents several application cases to show how the methods solve different real world problems; Discusses the links between methods to help stimulate new research and application directions.

Springer Nature
com.springer.onix.9783319898032

Learning from data streams in evolving environments.
9783319898025

Big data.
Machine learning.
Automatic control engineering.
Big data.
Communications engineering-- telecommunications.
COMPUTERS-- General.
Data mining.
Machine learning.
Reliability engineering.

COM-- 000000
TJK

006
.
3/1
23

Q325
.
5

Sayed-Mouchaweh, Moamar

20200823114832.0
pn

 مطالعه متن کتاب 

[Book]

Y

الاقتراح / اعلان الخلل

تحذیر! دقق في تسجیل المعلومات
ارسال عودة
تتم إدارة هذا الموقع عبر مؤسسة دار الحديث العلمية - الثقافية ومركز البحوث الكمبيوترية للعلوم الإسلامية (نور)
المكتبات هي المسؤولة عن صحة المعلومات كما أن الحقوق المعنوية للمعلومات متعلقة بها
برترین جستجوگر - پنجمین جشنواره رسانه های دیجیتال