یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references.
یادداشتهای مربوط به مندرجات
متن يادداشت
Chapter 1. Information Source Estimation with Multi-Channel Graph Neural Network -- Chapter 2. Link Prediction based on Hyper-Substructure Network -- Chapter 3. Broad Learning Based on Subgraph Networks for Graph Classification -- Chapter 4. Subgraph Augmentation with Application to Graph Mining -- 5. Adversarial Attacks on Graphs: How to Hide Your Structural Information -- Chapter 6. Adversarial Defenses on Graphs: Towards Increasing the Robustness of Algorithms -- Chapter 7. Understanding Ethereum Transactions via Network Approach -- Chapter 8. Find Your Meal Pal: A Case Study on Yelp Network -- Chapter 9. Graph convolutional recurrent neural networks: a deep learning framework for traffic prediction -- Chapter 10. Time Series Classification based on Complex Network -- Chapter 11. Exploring the Controlled Experiment by Social Bots.
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Graph data is powerful, thanks to its ability to model arbitrary relationship between objects and is encountered in a range of real-world applications in fields such as bioinformatics, traffic network, scientific collaboration, world wide web and social networks. Graph data mining is used to discover useful information and knowledge from graph data. The complications of nodes, links and the semi-structure form present challenges in terms of the computation tasks, e.g., node classification, link prediction, and graph classification. In this context, various advanced techniques, including graph embedding and graph neural networks, have recently been proposed to improve the performance of graph data mining. This book provides a state-of-the-art review of graph data mining methods. It addresses a current hot topic--the security of graph data mining-- and proposes a series of detection methods to identify adversarial samples in graph data. In addition, it introduces readers to graph augmentation and subgraph networks to further enhance the models, i.e., improve their accuracy and robustness. Lastly, the book describes the applications of these advanced techniques in various scenarios, such as traffic networks, social and technical networks, and blockchains.
ویراست دیگر از اثر در قالب دیگر رسانه
شماره استاندارد بين المللي کتاب و موسيقي
9789811626081
شناسگر رکورد کتابشناختي
(OCoLC)1246352444.
موضوع (اسم عام یاعبارت اسمی عام)
عنصر شناسه ای
Data mining.
عنصر شناسه ای
Graph theory
تقسیم فرعی موضوعی
Data processing.
مقوله موضوعی
کد مقوله موضوعی
UNF
کد مقوله موضوعی
COM021030
کد مقوله موضوعی
UNF
کد مقوله موضوعی
UYQE
کد سيستم
bicssc
کد سيستم
bisacsh
کد سيستم
thema
کد سيستم
thema
رده بندی ديویی
شماره
006
.
3/12
ويراست
23
رده بندی کنگره
شماره رده
QA76
.
9
نشانه اثر
.
D343G73
2021
نام شخص - ( مسئولیت معنوی درجه دوم )
عنصر شناسه اي
Xuan, Qi,
عنصر شناسه اي
Ruan, Zhongyuan,
عنصر شناسه اي
Min, Yong,
شناسه افزوده (تنالگان)
عنصر شناسه اي
Ohio Library and Information Network.
مبدا اصلی
سازمان
کتابخانه مرکزی و مرکز اطلاع رسانی دانشگاه
تاريخ عمليات
20231009071036.0
قواعد فهرست نويسي ( بخش توصيفي )
rda
دسترسی و محل الکترونیکی
تاريخ و ساعت مذاکره و دسترسي
Graph Data Mining(2021)[Xuan Ruan][9789811626098] (2021).pdf