Python for probability, statistics, and machine learning /
نام نخستين پديدآور
Jos�e Unpingco.
وضعیت ویراست
وضعيت ويراست
Third edition.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Cham, Switzerland :
نام ناشر، پخش کننده و غيره
Springer,
تاریخ نشرو بخش و غیره
2022.
مشخصات ظاهری
نام خاص و کميت اثر
509p.
ساير جزييات
illustrations (black and white, and color)
یادداشتهای مربوط به بسته بندی و دسترس بودن اثر
متن يادداشت
Available to OhioLINK libraries.
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references.
متن يادداشت
Includes bibliographical references and index.
یادداشتهای مربوط به مندرجات
متن يادداشت
Introduction -- Part 1 Getting Started with Scientific Python -- Installation and Setup -- Numpy -- Matplotlib -- Ipython -- Jupyter Notebook -- Scipy -- Pandas -- Sympy -- Interfacing with Compiled Libraries -- Integrated Development Environments -- Quick Guide to Performance and Parallel Programming -- Other Resources -- Part 2 Probability -- Introduction -- Projection Methods -- Conditional Expectation as Projection -- Conditional Expectation and Mean Squared Error -- Worked Examples of Conditional Expectation and Mean Square Error Optimization -- Useful Distributions -- Information Entropy -- Moment Generating Functions -- Monte Carlo Sampling Methods -- Useful Inequalities -- Part 3 Statistics -- Python Modules for Statistics -- Types of Convergence -- Estimation Using Maximum Likelihood -- Hypothesis Testing and P-Values -- Confidence Intervals -- Linear Regression -- Maximum A-Posteriori -- Robust Statistics -- Bootstrapping -- Gauss Markov -- Nonparametric Methods -- Survival Analysis -- Part 4 Machine Learning -- Introduction -- Python Machine Learning Modules -- Theory of Learning -- Decision Trees -- Boosting Trees -- Logistic Regression -- Generalized Linear Models -- Regularization -- Support Vector Machines -- Dimensionality Reduction -- Clustering -- Ensemble Methods -- Deep Learning -- Notation -- References -- Index.
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Using a novel integration of mathematics and Python codes, this book illustrates the fundamental concepts that link probability, statistics, and machine learning, so that the reader can not only employ statistical and machine learning models using modern Python modules, but also understand their relative strengths and weaknesses. To clearly connect theoretical concepts to practical implementations, the author provides many worked-out examples along with "Programming Tips" that encourage the reader to write quality Python code. The entire text, including all the figures and numerical results, is reproducible using the Python codes provided, thus enabling readers to follow along by experimenting with the same code on their own computers. Modern Python modules like Pandas, Sympy, Scikit-learn, Statsmodels, Scipy, Xarray, Tensorflow, and Keras are used to implement and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, interpretability, and regularization. Many abstract mathematical ideas, such as modes of convergence in probability, are explained and illustrated with concrete numerical examples. This book is suitable for anyone with undergraduate-level experience with probability, statistics, or machine learning and with rudimentary knowledge of Python programming. Features a novel combination of modern Python implementations and underlying mathematics to illustrate and visualize the foundational ideas of probability, statistics, and machine learning; Includes meticulously worked-out numerical examples, all reproducible using the Python code provided in the text, that compute and visualize statistical and machine learning models thus enabling the reader to not only implement these models but understand their inherent trade-offs; Utilizes modern Python modules such as Statsmodels, Tensorflow, Keras, Sympy, and Scikit-learn, along with embedded "Programming Tips" to encourage readers to develop quality Python codes that implement and illustrate practical concepts.
ویراست دیگر از اثر در قالب دیگر رسانه
پديدآور
Unpingco, Jos�e, 1969-
محل نشر
Cham : Springer, 2022
وضعيت ويراست
Third edition.
عنوان
Python for probability, statistics, and machine learning.
شماره استاندارد بين المللي کتاب و موسيقي
9783031046476
شناسگر رکورد کتابشناختي
(OCoLC)1328003998.
موضوع (اسم عام یاعبارت اسمی عام)
عنصر شناسه ای
Python (Computer program language)
عنصر شناسه ای
Probabilities
عنصر شناسه ای
Statistics
عنصر شناسه ای
Machine learning.
تقسیم فرعی موضوعی
Data processing.
تقسیم فرعی موضوعی
Data processing.
مقوله موضوعی
کد مقوله موضوعی
TJK
کد مقوله موضوعی
TEC041000
کد مقوله موضوعی
TJK
کد سيستم
bicssc
کد سيستم
bisacsh
کد سيستم
thema
رده بندی ديویی
شماره
005
.
13/3
ويراست
23/eng/20221117
رده بندی کنگره
شماره رده
QA76
.
73
نشانه اثر
.
P98U4
2022
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )
عنصر شناسه اي
Unpingco, Jos�e,
تاريخ
1969-
شناسه افزوده (تنالگان)
عنصر شناسه اي
Ohio Library and Information Network.
مبدا اصلی
سازمان
کتابخانه مرکزی و مرکز اطلاع رسانی دانشگاه
تاريخ عمليات
20231014060308.0
قواعد فهرست نويسي ( بخش توصيفي )
pn
دسترسی و محل الکترونیکی
نام الکترونيکي
Python for Probability, Statistics, and Machine Learning-Springer (2022).pdf