Differential quadrature and its application in engineering /
نام عام مواد
[Book]
نام نخستين پديدآور
Chang Shu.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Heidelberg :
نام ناشر، پخش کننده و غيره
Springer,
تاریخ نشرو بخش و غیره
2000.
مشخصات ظاهری
نام خاص و کميت اثر
xvi, 340 pages :
ساير جزييات
illustrations ;
ابعاد
25 cm
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references (pages 324-335) and index.
یادداشتهای مربوط به مندرجات
متن يادداشت
1. Mathematical Fundamentals of Differential Quadrature Method: Linear Vector Space Analysis and Function Approximation -- 2. Polynomial-based Differential Quadrature (PDQ) -- 3. Fourier Expansion-based Differential Quadrature (FDQ) -- 4. Some Properties of DQ Weighting Coefficient Matrices -- 5. Solution Techniques for DQ Resultant Equations -- 6. Application of Differential Quadrature Method to Solve Incompressible Navier-Stokes Equations -- 7. Application of Differential Quadrature Method to Structural and Vibration Analysis -- 8. Miscellaneous Applications of Differential Quadrature Method -- 9. Application of Differential Quadrature to Complex Problems.
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
In the past few years, the differential quadrature method has been applied extensively in engineering. This book, aimed primarily at practising engineers, scientists and graduate students, gives a systematic description of the mathematical fundamentals of differential quadrature and its detailed implementation in solving Helmholtz problems and problems of flow, structure and vibration. Differential quadrature provides a global approach to numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based differential quadrature methods can be computed explicitly. It is also demonstrated that the polynomial-based differential quadrature method is equivalent to the highest-order finite difference scheme. Furthermore, the relationship between differential quadrature and conventional spectral collocation is analysed. The book contains material on: - Linear Vector Space Analysis and the Approximation of a Function; - Polynomial-, Fourier Expansion- and Exponential-based Differential Quadrature; - Differential Quadrature Weighting Coefficient Matrices; - Solution of Differential Quadrature-resultant Equations; - The Solution of Incompressible Navier-Stokes and Helmholtz Equations; - Structural and Vibrational Analysis Applications; - Generalized Integral Quadrature and its Application in the Solution of Boundary Layer Equations. Three FORTRAN programs for simulation of driven cavity flow, vibration analysis of plate and Helmholtz eigenvalue problems respectively, are appended. These sample programs should give the reader a better understanding of differential quadrature and can easily be modified to solve the readers own engineering problems.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Differential equations-- Numerical solutions.
موضوع مستند نشده
Engineering mathematics.
موضوع مستند نشده
Numerical integration.
موضوع مستند نشده
Differential equations-- Numerical solutions.
موضوع مستند نشده
Engineering mathematics.
موضوع مستند نشده
Numerical integration.
مقوله موضوعی
موضوع مستند نشده
QA
رده بندی ديویی
شماره
515/
.
353
ويراست
21
رده بندی کنگره
شماره رده
QA372
نشانه اثر
.
S454
2000
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )