Oxidative Coupling of Methane using Nanofiber Catalysts and Discovery of Catalysts for Atmospheric Reduction of CO2 to Methanol
نام ساير پديدآوران
Senkan, Selim M
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
UCLA
تاریخ نشرو بخش و غیره
2017
یادداشتهای مربوط به پایان نامه ها
کسي که مدرک را اعطا کرده
UCLA
امتياز متن
2017
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
The goal of this research is to explore novel catalytic material and systems for effective conversion of C1 feed. Catalysis of C1 chemistry is of critical importance for the clean production of fuels and chemicals and future energy sustainability. Herein, two processes were studied: In the first section, a comprehensive study of oxidative coupling of methane (OCM) using novel nanofiber catalysts of mixed metal oxides was undertaken and in the second section, direct catalytic conversion of carbon dioxide (CO2) to methanol was studied, which resulted in discovery of a superior catalytic system for CO2 hydrogenation to methanol.Section 1: Utilization of natural gas as an alternate chemical feedstock to petroleum has been a highly desirable but difficult goal in industrial catalysis. Accordingly, there has been a substantial interest in the oxidative coupling of methane (OCM), which allows for the direct catalytic conversion of methane into economically valuable C2+ hydrocarbons. OCM is a complex reaction process involving heterogeneous catalysis intricately coupled with gas phase reactions; hence, despite decades' worth of research, it has yet to be commercialized. The lack of progress in OCM is primarily due to the following reasons: 1. The absence of a highly active and robust catalyst that can operate at lower temperatures; and 2. Our inadequate understanding of the underlying detailed chemical kinetics mechanism (DCKM) of the OCM process, which impedes the undertaking of quantitative simulations of novel reactor configurations and/or operating strategies. To address these issues, we undertook the following program of studies: 1. Further improved the synthesis of novel nanofiber catalysts by electrospinning, building on the early discovery that La2O3-CeO2 nanofibers were highly active and robust OCM catalysts; 2. Applied our novel microprobe sampling system to OCM reactors for the acquisition of spatially resolved species concentration and temperatures profiles within the catalytic zone. Our novel sampling approach led to the important discovery that H2 is produced very early in the OCM catalytic zone, an observation that was completely missed in all prior studies. The application of our novel microprobe system to a dual-bed OCM reactor also demonstrated the feasibility to significantly improve C2+ product yields to 21% (from 16% for single bed) which we plan to further improve by considering more sequential beds; 3. Outlined development and validation of new generation of DCKM for the OCM process using the high-information content of spatial concentration profiles obtained in part 2. Most importantly, to improve the current DCKM literature by considering surface reactions that result in early H2 formation. Validated DCKM represent highly valuable numerical tools that allow for the prediction of the OCM performance of different reactor configurations operating under a broad range of conditions, e.g. high pressures, porous wall reactors etc. Consequently, this new generation of comprehensive DCKM based on the sampling profiles, detailed in this report, will be of considerable use in improving the yields of useful products in the OCM process; 4. Explore novel conditions that include oxygen-feed distributed packed bed OCM reactors and coupled catalytic and non-thermal plasma OCM reactors, again to further push the yields for useful C2+ products. The details of the proposed approach for implementing such reactor configurations and development of a new generation of DCKM for the OCM process is outlined in the future work, Chapter 4, of section 1 of the report.Section 2: Direct catalytic conversion of carbon dioxide to liquid fuels and basic chemicals, such as methanol, using solar-derived hydrogen at or near ambient pressure is a highly desirable goal in heterogeneous catalysis. When realized, this technology will pave the way for a sustainable society together with decentralized power generation. Here we report a novel class of holmium (Ho) containing multi-metal oxide Cu catalysts discovered through the application of high-throughput methods. In particular, ternary systems of Cu-GaOx-HoOy > Cu-CeOx-HoOy ~ Cu-LaOx-HoOy supported on γ-Al2O3 exhibited superior methanol production (10x) with less CO formation than previously reported catalysts at atmospheric pressure. Holmium was shown to be highly dispersed as few-atom clusters, suggesting that the formation of tri-metallic sites could be the key for the promotion of methanol synthesis by Ho.
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )