Implantable Neural Recording Front-Ends for Closed-Loop Neuromodulation Systems
نام عام مواد
[Thesis]
نام نخستين پديدآور
Chandrakumar, Hariprasad
نام ساير پديدآوران
Marković, Dejan
وضعیت نشر و پخش و غیره
تاریخ نشرو بخش و غیره
2018
یادداشتهای مربوط به پایان نامه ها
کسي که مدرک را اعطا کرده
Marković, Dejan
امتياز متن
2018
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
The goal of neuromodulation is to alter neural activity through targeted delivery of a stimulus to specific sites in the body. A prominent example of neuromodulation is deep brain stimulation (DBS), which has proved effective in mitigating the effects of certain neurological conditions. However, existing neuromodulation treatments lack real-time feedback (simultaneous sensing) to adapt stimulation parameters in response to brain dynamics. Hence, neuroscientists and clinicians aim to perform closed-loop neuromodulation, where stimulation can be optimally controlled in real time for better treatment outcomes. In recent years, the community has emphasized closed-loop neuromodulation as a highly desirable tool for administering therapy in patients suffering from drug-resistant neurological ailments. A miniaturized autonomous implant would be instrumental in ensuring that neuromodulation achieves its full potential. A key requirement for any closed-loop neuromodulation system is the ability to record neural signals while concurrently performing stimulation. However, neural stimulation generates large differential and common-mode artifacts at the recording sites, which easily saturate existing implantable recording front-ends due to their limited linear input range. To observe the neural response during stimulation, the front-end must faithfully digitize neural signals in the presence of large stimulation artifacts. The front-end must also satisfy strict constraints on power consumption, noise and input impedance, while achieving a small form-factor. State-of-the-art neural recording front-ends do not meet these requirements. This work presents a recording front-end that can digitize neural signals in the presence of 200mVpp differential artifacts and 700mVpp common-mode artifacts. The front-end consists of a chopper amplifier and a 15.2b-ENOB continuous-time delta-sigma ADC. In the design of the chopper amplifier, new techniques have been proposed that introduce immunity to common-mode interference, increase the DC input impedance (Zin) of the chopper amplifier to 1.5GΩ, and enable the realization of large resistances (90GΩ) on-chip in a small area for filtering electrode offsets. In the design of the delta-sigma ADC, a modified loop-filter is used along with new linearization techniques to significantly reduce power consumption in the ADC. These techniques enable our recording front-end to achieve a dynamic range of 90dB (14b ENOB) in 1Hz - 200Hz, and 81dB (12.7b ENOB) in 1Hz - 5kHz. Implemented in a 40nm CMOS process, the prototype occupies an area of 0.113mm2/channel, consumes 7.3�W from a 1.2V supply, and can digitize neural signals from 1Hz to 5kHz. The input-referred noise is 1.8�Vrms (1Hz - 200Hz) and 6.35�Vrms (1Hz - 5kHz). The total harmonic distortion for a 200mVpp input at 1kHz is −81dB. Compared to state-of-the-art neural recording front-ends, this work improves Zin by 24.2x (for chopped front-ends), the linear-input range by 2x, the signal bandwidth (BW) by 10x, the dynamic range by 12.6dB, and tolerance to common-mode interferers by 6.5x, while maintaining comparable power and noise performance. The ADC alone consumes 4.5�W, has Zin of 20MΩ, BW of 5kHz, and achieves a peak SNDR of 93.5dB for a 1.77Vpp differential input at 1kHz. The ADC's Schreier FOM (using SNDR) is 184dB, which is 6dB higher than the state-of-the-art in high-resolution ADCs.
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )