SpringerBriefs in statistics, JSS Research Series in Statistics,
شاپا ي ISSN فروست
2364-0057
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references and index.
یادداشتهای مربوط به مندرجات
متن يادداشت
Intro; Preface; Use as a Textbook; Use as a Reference Book; Acknowledgements; Contents; Abbreviations; Notations; 1 Setting the Scene; 1.1 Endpoints and Censoring; 1.2 Motivations for Investigating Correlated Endpoints; 1.2.1 Understanding Disease Progression Mechanisms; 1.2.2 Dynamic Prediction of Death; 1.2.3 Validating Surrogate Endpoints; 1.3 Copulas and Bivariate Survival Models: A Brief History; References; 2 Introduction to Multivariate Survival Analysis; 2.1 Endpoints and Censoring; 2.2 Basic Terminologies; 2.3 Cox Regression; 2.3.1 R Survival Package; 2.4 Likelihood-Based Method
متن يادداشت
2.4.1 Spline and Penalized Likelihood2.5 Clustered Survival Data; 2.5.1 Shared Frailty Model; 2.5.2 Likelihood Function; 2.5.3 Penalized Likelihood and Spline; 2.6 Copulas for Bivariate Event Times; 2.6.1 Measures of Dependence; 2.6.2 Residual Dependence; 2.6.3 Likelihood Function; 2.7 Exercises; References; 3 The Joint Frailty-Copula Model for Correlated Endpoints; 3.1 Introduction; 3.2 Semi-competing Risks Data; 3.3 Joint Frailty-Copula Model; 3.4 Penalized Likelihood with Splines; 3.5 Case Study: Ovarian Cancer Data; 3.6 Technical Note 1: Numerical Maximization
متن يادداشت
6.4 Left Truncation6.5 Interactions; 6.5.1 (Gene × Gene) Interaction; 6.5.2 (Gene × Time) Interaction; 6.6 Parametric Failure Time Models; 6.7 Compound Covariate; References; Appendix A: Spline Basis Functions; Appendix B: R Codes for the Ovarian Cancer Data Analysis; B1. Using the CXCL12 Gene as a Covariate; B2. Using the Compound Covariates (CCs) and Residual Tumour as Covariates; Appendix C: Derivation of Prediction Formulas; Index
بدون عنوان
0
بدون عنوان
8
بدون عنوان
8
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This book introduces readers to advanced statistical methods for analyzing survival data involving correlated endpoints. In particular, it describes statistical methods for applying Cox regression to two correlated endpoints by accounting for dependence between the endpoints with the aid of copulas. The practical advantages of employing copula-based models in medical research are explained on the basis of case studies. In addition, the book focuses on clustered survival data, especially data arising from meta-analysis and multicenter analysis. Consequently, the statistical approaches presented here employ a frailty term for heterogeneity modeling. This brings the joint frailty-copula model, which incorporates a frailty term and a copula, into a statistical model. The book also discusses advanced techniques for dealing with high-dimensional gene expressions and developing personalized dynamic prediction tools under the joint frailty-copula model. To help readers apply the statistical methods to real-world data, the book provides case studies using the authors' original R software package (freely available in CRAN). The emphasis is on clinical survival data, involving time-to-tumor progression and overall survival, collected on cancer patients. Hence, the book offers an essential reference guide for medical statisticians and provides researchers with advanced, innovative statistical tools. The book also provides a concise introduction to basic multivariate survival models.
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Springer Nature
شماره انبار
com.springer.onix.9789811335167
ویراست دیگر از اثر در قالب دیگر رسانه
عنوان
Survival analysis with correlated endpoints.
شماره استاندارد بين المللي کتاب و موسيقي
9789811335150
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Survival analysis (Biometry)
موضوع مستند نشده
Survival analysis (Biometry)
مقوله موضوعی
موضوع مستند نشده
MBNS
موضوع مستند نشده
MED090000
موضوع مستند نشده
PBT
موضوع مستند نشده
PBT
رده بندی ديویی
شماره
519
.
5/46
ويراست
23
رده بندی کنگره
شماره رده
QA276
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )