M. Arif Wani, Farooq Ahmad Bhat, Saduf Afzal, Asif Iqbal Khan.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Singapore :
نام ناشر، پخش کننده و غيره
Springer,
تاریخ نشرو بخش و غیره
[2020]
مشخصات ظاهری
نام خاص و کميت اثر
1 online resource
فروست
عنوان فروست
Studies in big data ;
مشخصه جلد
volume 57
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references.
یادداشتهای مربوط به مندرجات
متن يادداشت
Intro; Preface; Contents; About the Authors; Abbreviations; 1 Introduction to Deep Learning; 1.1 Introduction; 1.2 Shallow Learning; 1.3 Deep Learning; 1.4 Why to Use Deep Learning; 1.5 How Deep Learning Works; 1.6 Deep Learning Challenges; Bibliography; 2 Basics of Supervised Deep Learning; 2.1 Introduction; 2.2 Convolutional Neural Network (ConvNet/CNN); 2.3 Evolution of Convolutional Neural Network Models; 2.4 Convolution Operation; 2.5 Architecture of CNN; 2.5.1 Convolution Layer; 2.5.2 Activation Function (ReLU); 2.5.3 Pooling Layer; 2.5.4 Fully Connected Layer; 2.5.5 Dropout
متن يادداشت
2.6 Challenges and Future Research DirectionBibliography; 3 Training Supervised Deep Learning Networks; 3.1 Introduction; 3.2 Training Convolution Neural Networks; 3.3 Loss Functions and Softmax Classifier; 3.3.1 Mean Squared Error (L2) Loss; 3.3.2 Cross-Entropy Loss; 3.3.3 Softmax Classifier; 3.4 Gradient Descent-Based Optimization Techniques; 3.4.1 Gradient Descent Variants; 3.4.2 Improving Gradient Descent for Faster Convergence; 3.5 Challenges in Training Deep Networks; 3.5.1 Vanishing Gradient; 3.5.2 Training Data Size; 3.5.3 Overfitting and Underfitting; 3.5.4 High-Performance Hardware
متن يادداشت
3.6 Weight Initialization Techniques3.6.1 Initialize All Weights to 0; 3.6.2 Random Initialization; 3.6.3 Random Weights from Probability Distribution; 3.6.4 Transfer Learning; 3.7 Challenges and Future Research Direction; Bibliography; 4 Supervised Deep Learning Architectures; 4.1 Introduction; 4.2 LeNet-5; 4.3 AlexNet; 4.4 ZFNet; 4.5 VGGNet; 4.6 GoogleNet; 4.7 ResNet; 4.8 Densely Connected Convolutional Network (DenseNet); 4.9 Capsule Network; 4.10 Challenges and Future Research Direction; Bibliography; 5 Unsupervised Deep Learning Architectures; 5.1 Introduction
متن يادداشت
5.2 Restricted Boltzmann Machine (RBM)5.2.1 Variants of Restricted Boltzmann Machine; 5.3 Deep Belief Network; 5.3.1 Variants of Deep Belief Network; 5.4 Autoencoders; 5.4.1 Variations of Auto Encoders; 5.5 Deep Autoencoders; 5.6 Generative Adversarial Networks; 5.7 Challenges and Future Research Direction; Bibliography; 6 Supervised Deep Learning in Face Recognition; 6.1 Introduction; 6.2 Deep Learning Architectures for Face Recognition; 6.2.1 VGG-Face Architecture; 6.2.2 Modified VGG-Face Architecture; 6.3 Performance Comparison of Deep Learning Models for Face Recognition
متن يادداشت
6.3.1 Performance Comparison with Variation in Facial Expression6.3.2 Performance Comparison on Images with Variation in Illumination Conditions; 6.3.3 Performance Comparison with Variation in Poses; 6.4 Challenges and Future Research Direction; Bibliography; 7 Supervised Deep Learning in Fingerprint Recognition; 7.1 Introduction; 7.2 Fingerprint Features; 7.3 Automatic Fingerprint Identification System (AFIS); 7.3.1 Feature Extraction Stage; 7.3.2 Minutia Matching Stage; 7.4 Deep Learning Architectures for Fingerprint Recognition; 7.4.1 Deep Learning for Fingerprint Segmentation
بدون عنوان
0
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This book introduces readers to both basic and advanced concepts in deep network models. It covers state-of-the-art deep architectures that many researchers are currently using to overcome the limitations of the traditional artificial neural networks. Various deep architecture models and their components are discussed in detail, and subsequently illustrated by algorithms and selected applications. In addition, the book explains in detail the transfer learning approach for faster training of deep models; the approach is also demonstrated on large volumes of fingerprint and face image datasets. In closing, it discusses the unique set of problems and challenges associated with these models.
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Springer Nature
شماره انبار
com.springer.onix.9789811367946
ویراست دیگر از اثر در قالب دیگر رسانه
عنوان
Advances in deep learning.
شماره استاندارد بين المللي کتاب و موسيقي
9789811367939
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Education-- Data processing.
موضوع مستند نشده
Learning, Psychology of.
موضوع مستند نشده
Motivation in education.
موضوع مستند نشده
Education-- Data processing.
موضوع مستند نشده
EDUCATION-- Essays.
موضوع مستند نشده
EDUCATION-- Organizations & Institutions.
موضوع مستند نشده
EDUCATION-- Reference.
موضوع مستند نشده
Learning, Psychology of.
موضوع مستند نشده
Motivation in education.
مقوله موضوعی
موضوع مستند نشده
EDU-- 024000
موضوع مستند نشده
EDU-- 036000
موضوع مستند نشده
EDU-- 042000
رده بندی ديویی
شماره
370
.
15/23
ويراست
23
رده بندی کنگره
شماره رده
LB1065
نشانه اثر
.
W36
2020
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )