5.2 Motivation for Rank Aggregation5.3 Analysis of Existing Extractive Systems; 5.3.1 Experimental Setup; 5.4 Ensemble of Extractive Summarisation Systems; 5.4.1 Effect of Informed Fusion; 5.5 Discussion; 5.5.1 Determining the Robustness of Candidate Systems; 5.5.2 Qualitative Analysis of Summaries; References; 6 Leveraging Content Similarity in Summaries for Generating Better Ensembles; 6.1 Limitations of Consensus-Based Aggregation; 6.2 Proposed Approach for Content-Based Aggregation; 6.3 Document Level Aggregation; 6.3.1 Experimental Results; 6.4 Sentence Level Aggregation; 6.4.1 SentRank
متن يادداشت
6.4.2 GlobalRank6.4.3 LocalRank; 6.4.4 HybridRank; 6.4.5 Experimental Results; 6.5 Conclusion; References; 7 Neural Model for Sentence Compression; 7.1 Sentence Compression by Deletion; 7.2 Sentence Compression Using Sequence to Sequence Model; 7.2.1 Sentence Encoder; 7.2.2 Context Encoder; 7.2.3 Decoder; 7.2.4 Attention Module; 7.3 Exploiting SMT Techniques for Sentence Compression; 7.4 Results for Sentence Compression; 7.5 Limitations of Sentence Compression Techniques; 7.6 Overall System; References; 8 Conclusion; References; A Sample Document-Summary Pairs from DUC, Legal and ACL Corpus
متن يادداشت
B The Dictionary Built Using Legal Boost MethodC Summaries Generated Using Rank Aggregation; D Summaries Generated Using Content-Based Aggregation; E Visualising Compression on Sentences from Legal Documents
بدون عنوان
0
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This book describes recent advances in text summarization, identifies remaining gaps and challenges, and proposes ways to overcome them. It begins with one of the most frequently discussed topics in text summarization - 'sentence extraction' -, examines the effectiveness of current techniques in domain-specific text summarization, and proposes several improvements. In turn, the book describes the application of summarization in the legal and scientific domains, describing two new corpora that consist of more than 100 thousand court judgments and more than 20 thousand scientific articles, with the corresponding manually written summaries. The availability of these large-scale corpora opens up the possibility of using the now popular data-driven approaches based on deep learning. The book then highlights the effectiveness of neural sentence extraction approaches, which perform just as well as rule-based approaches, but without the need for any manual annotation. As a next step, multiple techniques for creating ensembles of sentence extractors - which deliver better and more robust summaries - are proposed. In closing, the book presents a neural network-based model for sentence compression. Overall the book takes readers on a journey that begins with simple sentence extraction and ends in abstractive summarization, while also covering key topics like ensemble techniques and domain-specific summarization, which have not been explored in detail prior to this.
ویراست دیگر از اثر در قالب دیگر رسانه
عنوان
From Extractive to Abstractive Summarization: a Journey.
شماره استاندارد بين المللي کتاب و موسيقي
9789811389337
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Automatic abstracting.
موضوع مستند نشده
Computational linguistics.
موضوع مستند نشده
Automatic abstracting.
موضوع مستند نشده
Computational linguistics.
مقوله موضوعی
موضوع مستند نشده
COM067000
موضوع مستند نشده
UKR
موضوع مستند نشده
UYD
موضوع مستند نشده
UYD
رده بندی ديویی
شماره
410
.
285
ويراست
23
رده بندی کنگره
شماره رده
P98
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )