Energy optimization and prediction in office buildings :
نام عام مواد
[Book]
ساير اطلاعات عنواني
a case study of office building design in Chile /
نام نخستين پديدآور
Carlos Rubio-Bellido, Alexis Pérez-Fargallo, Jesús Pulido-Arcas.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Cham, Switzerland :
نام ناشر، پخش کننده و غيره
Springer,
تاریخ نشرو بخش و غیره
2018.
مشخصات ظاهری
نام خاص و کميت اثر
1 online resource
فروست
عنوان فروست
SpringerBriefs in energy,
شاپا ي ISSN فروست
2191-5520
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references.
یادداشتهای مربوط به مندرجات
متن يادداشت
Intro; Contents; Symbols and Abbreviations; 1 Introduction; 1.1 Energy in Buildings; 1.2 Office Sector in Chile; 1.3 Legal Framework and Energy Services; References; 2 Research Method; 2.1 Introduction; 2.2 Calculation Procedure; 2.2.1 Internal and External Loads; 2.2.2 Heat Balance; 2.2.3 Heat Gains; 2.2.4 Energy Demand; 2.2.5 Energy Consumption and CO2 Emissions; 2.3 Test Models; 2.3.1 Location; 2.3.2 Geometry; 2.3.3 Constructive Systems; 2.4 Climate Context; 2.4.1 Current Climate Zones; 2.4.2 Climate Change Simulation; 2.5 Optimization and Prediction Methods; 2.5.1 Minimal Energy Demand.
متن يادداشت
2.5.2 Multiple Linear Regressions2.5.3 Multilayer Perceptron; References; 3 Energy Demand Analysis; 3.1 Introduction; 3.2 Climate Variation; 3.3 Effects on Annual Energy Demand; 3.3.1 WWR and FR Influence; 3.3.2 Annual Energy Demand for Different Climate Scenarios; 3.3.3 Heating and Cooling Energy Demand for Different Climate Scenarios; 3.4 Effects on Design Strategies; 3.4.1 Evolution on Annual Energy Demand; 3.4.2 Evolution on WWR and FR; 3.5 Discussions; 4 Multiple Linear Regressions; 4.1 Introduction; 4.2 Energy Consumption; 4.3 CO2 Emissions; 4.4 Regression Models Validation.
متن يادداشت
4.5 Discussions5 Artificial Neural Networks; 5.1 Introduction; 5.2 Data Description; 5.3 Data Pre-processing; 5.4 Comparison with Linear Regressions; 5.5 Discussions.
بدون عنوان
0
بدون عنوان
8
بدون عنوان
8
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This book explains how energy demand and energy consumption in new buildings can be predicted and how these aspects and the resulting CO2 emissions can be reduced. It is based upon the authors' extensive research into the design and energy optimization of office buildings in Chile. The authors first introduce a calculation procedure that can be used for the optimization of energy parameters in office buildings, and to predict how a changing climate may affect energy demand. The prediction of energy demand, consumption and CO2 emissions is demonstrated by solving simple equations using the example of Chilean buildings, and the findings are subsequently applied to buildings around the globe. An optimization process based on Artificial Neural Networks is discussed in detail, which predicts heating and cooling energy demands, energy consumption and CO2 emissions. Taken together, these processes will show readers how to reduce energy demand, consumption and CO2 emissions associated with office buildings in the future. Readers will gain an advanced understanding of energy use in buildings and how it can be reduced.
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Springer Nature
شماره انبار
com.springer.onix.9783319901466
ویراست دیگر از اثر در قالب دیگر رسانه
عنوان
Energy optimization and prediction in office buildings.