یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references and index.
یادداشتهای مربوط به مندرجات
متن يادداشت
Intro; Preface; Acknowledgements; Contents; 1 Prolegomena; 1.1 Preliminaries; 1.2 Hyperbolicity, the Energy Method and Well-Posedness; 1.3 The Lax-Mizohata Theorems; 1.3.1 Strictly Hyperbolic Operators; 1.3.2 Ill-Posedness Examples; 1.4 Holmgren's Uniqueness Theorems; 1.5 Carleman's Method Displayed on a Simple Example; 1.5.1 The overline Equation; 1.5.2 The Laplace Equation; 2 A Toolbox for Carleman Inequalities; 2.1 Weighted Inequalities; 2.2 Conjugation; 2.3 Sobolev Spaces with Parameter; 2.4 The Symbol of the Conjugate; 2.5 Choice of the Weight
متن يادداشت
3 Operators with Simple Characteristics: Calderón's Theorems3.1 Introduction; 3.2 Inequalities for Symbols; 3.3 A Carleman Inequality; 3.4 Examples; 3.4.1 Second-Order Real Elliptic Operators; 3.4.2 Strictly Hyperbolic Operators; 3.4.3 Products; 3.4.4 Generalizations of Calderón's Theorems; 3.5 Cutting the Regularity Requirements; 4 Pseudo-convexity: Hörmander's Theorems; 4.1 Introduction; 4.2 Inequalities for Symbols; 4.3 Pseudo-convexity; 4.3.1 Carleman Inequality, Definition; 4.3.2 Invariance Properties of Strong Pseudo-convexity; 4.3.3 Unique Continuation; 4.4 Examples
متن يادداشت
4.4.1 Pseudoconvexity for Real Second-Order Operators4.4.2 The Tricomi Operator; 4.4.3 Constant Coefficients; 4.4.4 The Characteristic Case; 4.5 Remarks and Open Problems; 4.5.1 Stability Under Perturbations; 4.5.2 Higher Order Tangential Bicharacteristics; 4.5.3 A Direct Method for Proving Carleman Estimates?; 5 Complex Coefficients and Principal Normality; 5.1 Introduction; 5.1.1 Complex-Valued Symbols; 5.1.2 Principal Normality; 5.1.3 Our Strategy for the Proof; 5.2 Pseudo-convexity and Principal Normality; 5.2.1 Pseudo-Convexity for Principally Normal Operators
متن يادداشت
5.2.2 Inequalities for Symbols5.2.3 Inequalities for Elliptic Symbols; 5.3 Unique Continuation via Pseudo-convexity; 5.4 Unique Continuation for Complex Vector Fields; 5.4.1 Warm-Up: Studying a Simple Model; 5.4.2 Carleman Estimates in Two Dimensions; 5.4.3 Unique Continuation in Two Dimensions; 5.4.4 Unique Continuation Under Condition (P); 5.5 Counterexamples for Complex Vector Fields; 5.5.1 Main Result; 5.5.2 Explaining the Counterexample; 5.5.3 Comments; 6 On the Edge of Pseudo-convexity; 6.1 Preliminaries; 6.1.1 Real Geometrical Optics; 6.1.2 Complex Geometrical Optics
متن يادداشت
6.2 The Alinhac-Baouendi Non-uniqueness Result6.2.1 Statement of the Result; 6.2.2 Proof of Theorem6.6; 6.3 Non-uniqueness for Analytic Non-linear Systems; 6.3.1 Preliminaries; 6.3.2 Proof of Theorem6.27; 6.4 Compact Uniqueness Results; 6.4.1 Preliminaries; 6.4.2 The Result; 6.4.3 The Proof; 6.5 Remarks, Open Problems and Conjectures; 6.5.1 Finite Type Conditions for Actual Uniqueness; 6.5.2 Ill-Posed Problems with Real-Valued Solutions; 7 Operators with Partially Analytic Coefficients; 7.1 Preliminaries; 7.1.1 Motivations; 7.1.2 Between Holmgren's and Hörmander's Theorems
بدون عنوان
0
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Over the past 25 years, Carleman estimates have become an essential tool in several areas related to partial differential equations such as control theory, inverse problems, or fluid mechanics. This book provides a detailed exposition of the basic techniques of Carleman Inequalities, driven by applications to various questions of unique continuation. Beginning with an elementary introduction to the topic, including examples accessible to readers without prior knowledge of advanced mathematics, the book's first five chapters contain a thorough exposition of the most classical results, such as Calderón's and Hörmander's theorems. Later chapters explore a selection of results of the last four decades around the themes of continuation for elliptic equations, with the Jerison-Kenig estimates for strong unique continuation, counterexamples to Cauchy uniqueness of Cohen and Alinhac & Baouendi, operators with partially analytic coefficients with intermediate results between Holmgren's and Hörmander's uniqueness theorems, Wolff's modification of Carleman's method, conditional pseudo-convexity, and more. With examples and special cases motivating the general theory, as well as appendices on mathematical background, this monograph provides an accessible, self-contained basic reference on the subject, including a selection of the developments of the past thirty years in unique continuation.
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Springer Nature
شماره انبار
com.springer.onix.9783030159931
ویراست دیگر از اثر در قالب دیگر رسانه
شماره استاندارد بين المللي کتاب و موسيقي
9783030159924
شماره استاندارد بين المللي کتاب و موسيقي
9783030159948
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Carleman theorem.
موضوع مستند نشده
Inequalities (Mathematics)
موضوع مستند نشده
Carleman theorem.
موضوع مستند نشده
Inequalities (Mathematics)
موضوع مستند نشده
MATHEMATICS-- Calculus.
موضوع مستند نشده
MATHEMATICS-- Mathematical Analysis.
مقوله موضوعی
موضوع مستند نشده
MAT-- 005000
موضوع مستند نشده
MAT-- 034000
موضوع مستند نشده
PBKF
موضوع مستند نشده
PBKF
رده بندی ديویی
شماره
515/
.
26
ويراست
23
رده بندی کنگره
شماره رده
QA295
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )