Developing networks using artificial intelligence /
نام عام مواد
[Book]
نام نخستين پديدآور
Haipeng Yao, Chunxiao Jiang, Yi Qian.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Cham :
نام ناشر، پخش کننده و غيره
Springer,
تاریخ نشرو بخش و غیره
2019.
مشخصات ظاهری
نام خاص و کميت اثر
1 online resource (xi, 248 pages) :
ساير جزييات
illustrations
فروست
عنوان فروست
Wireless networks,
شاپا ي ISSN فروست
2366-1186
یادداشتهای مربوط به مندرجات
متن يادداشت
Intro; Preface; Acknowledgments; Contents; 1 Introduction; 1.1 Background; 1.2 Overview of SDN and Machine Learning; 1.2.1 Software Defined Networking (SDN); 1.2.2 Machine Learning; 1.2.2.1 Supervised Learning; 1.2.2.2 Unsupervised Learning; 1.2.2.3 Reinforcement Learning; 1.3 Related Research and Development; 1.3.1 3GPP SA2; 1.3.2 ETSI ISG ENI; 1.3.3 ITU-T FG-ML5G; 1.4 Organizations of This Book; 1.5 Summary; 2 Intelligence-Driven Networking Architecture; 2.1 Network AI: An Intelligent Network Architecture for Self-Learning Control Strategies in Software Defined Networks
متن يادداشت
2.1.1 Network Architecture2.1.1.1 Forwarding Plane; 2.1.1.2 Control Plane; 2.1.1.3 AI Plane; 2.1.2 Network Control Loop; 2.1.2.1 Action Issue; 2.1.2.2 Network State Upload; 2.1.2.3 Policy Generation; 2.1.3 Use Case; 2.1.4 Challenges and Discussions; 2.1.4.1 Communication Overhead; 2.1.4.2 Training Cost; 2.1.4.3 Testbeds; 2.2 Summary; References; 3 Intelligent Network Awareness; 3.1 Intrusion Detection System Based on Multi-Level Semi-Supervised Machine Learning; 3.1.1 Proposed Scheme (MSML); 3.1.1.1 Pure Cluster Extraction (PCE); 3.1.1.2 Pattern Discovery (PD)
متن يادداشت
3.1.1.3 Fine-Grained Classification (FC)3.1.1.4 Model Updating; 3.1.1.5 The Hyper-Parameters; 3.1.2 Evaluation; 3.1.2.1 Dataset; 3.1.2.2 Data Pre-process; 3.1.2.3 Evaluation Criteria; 3.1.2.4 Baseline Model; 3.1.2.5 MSML; 3.2 Intrusion Detection Based on Hybrid Multi-Level Data Mining; 3.2.1 The Framework of HMLD; 3.2.2 HMLD with KDDCUP99; 3.2.2.1 KDDCUP99 Dataset; 3.2.2.2 MH-DE Module; 3.2.2.3 MH-ML Module; 3.2.2.4 MEM Module; 3.2.3 Experimental Results and Discussions; 3.2.3.1 Evaluation Criteria; 3.2.3.2 Experiments and Analysis
متن يادداشت
3.3 Abnormal Network Traffic Detection Based on Big Data Analysis3.3.1 System Model; 3.3.1.1 Normal Traffic Selection Model; 3.3.1.2 Abnormal Traffic Selection Model; 3.3.1.3 Abnormal Traffic Selection Model; 3.3.2 Simulation Results and Discussions; 3.3.2.1 Data Set; 3.3.2.2 Simulation Results; 3.3.2.3 Discussing Result of No. 8 and No. 11; 3.3.2.4 Discussing Result of No. 5 and No. 7; 3.3.2.5 Discussing Result of No. 3 and No. 4; 3.4 Summary; References; 4 Intelligent Network Control; 4.1 Multi-Controller Optimization in SDN; 4.1.1 System Model; 4.1.1.1 Network Model
متن يادداشت
4.1.1.2 Communication Model4.1.1.3 Computation Model; 4.1.1.4 Problem Formulation; 4.1.2 Methodology; 4.1.2.1 PSO Aided Near-Optimal Multi-Controller Placement; 4.1.2.2 Resource Management Relying on Deep Q-Learning; 4.1.3 Simulation Results; 4.2 QoS-Enabled Load Scheduling Based on ReinforcementLearning; 4.2.1 System Description; 4.2.1.1 Energy Internet; 4.2.1.2 Software-Defined Energy Internet; 4.2.1.3 Controller Mind framework; 4.2.1.4 Re-Queuing Module; 4.2.1.5 Info-Table Module; 4.2.1.6 Learning Module; 4.2.2 System Model; 4.2.2.1 Re-Queuing Model; 4.2.2.2 Workload Model
بدون عنوان
0
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This book mainly discusses the most important issues in artificial intelligence-aided future networks, such as applying different ML approaches to investigate solutions to intelligently monitor, control and optimize networking. The authors focus on four scenarios of successfully applying machine learning in network space. It also discusses the main challenge of network traffic intelligent awareness and introduces several machine learning-based traffic awareness algorithms, such as traffic classification, anomaly traffic identification and traffic prediction. The authors introduce some ML approaches like reinforcement learning to deal with network control problem in this book. Traditional works on the control plane largely rely on a manual process in configuring forwarding, which cannot be employed for today's network conditions. To address this issue, several artificial intelligence approaches for self-learning control strategies are introduced. In addition, resource management problems are ubiquitous in the networking field, such as job scheduling, bitrate adaptation in video streaming and virtual machine placement in cloud computing. Compared with the traditional with-box approach, the authors present some ML methods to solve the complexity network resource allocation problems. Finally, semantic comprehension function is introduced to the network to understand the high-level business intent in this book. With Software-Defined Networking (SDN), Network Function Virtualization (NFV), 5th Generation Wireless Systems (5G) development, the global network is undergoing profound restructuring and transformation. However, with the improvement of the flexibility and scalability of the networks, as well as the ever-increasing complexity of networks, makes effective monitoring, overall control, and optimization of the network extremely difficult. Recently, adding intelligence to the control plane through AI & ML become a trend and a direction of network development This book's expected audience includes professors, researchers, scientists, practitioners, engineers, industry managers, and government research workers, who work in the fields of intelligent network. Advanced-level students studying computer science and electrical engineering will also find this book useful as a secondary textbook.
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Springer Nature
شماره انبار
com.springer.onix.9783030150280
ویراست دیگر از اثر در قالب دیگر رسانه
شماره استاندارد بين المللي کتاب و موسيقي
9783030150273
شماره استاندارد بين المللي کتاب و موسيقي
9783030150297
شماره استاندارد بين المللي کتاب و موسيقي
9783030150303
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Artificial intelligence.
موضوع مستند نشده
Computer networks.
موضوع مستند نشده
Artificial intelligence.
موضوع مستند نشده
Computer networks.
مقوله موضوعی
موضوع مستند نشده
TEC061000
موضوع مستند نشده
TJKW
موضوع مستند نشده
TJKW
رده بندی ديویی
شماره
006
.
3
ويراست
23
رده بندی کنگره
شماره رده
Q335
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )