یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references.
یادداشتهای مربوط به مندرجات
متن يادداشت
Intro; Preface; Introduction; Contents; Part I: Vector Space Model in the Analysis of Similarity between Texts; Chapter 1: Formalization in Computational Linguistics; 1.1 Computational Linguistics; 1.2 Computational Linguistics and Artificial Intelligence; 1.3 Formalization in Computational Linguistics; Chapter 2: Vector Space Model; 2.1 The Main Idea of the Vector Space Model; 2.2 Example of the Vector Space Model; 2.3 Similarity of Objects in the Vector Space Model; 2.4 Cosine Similarity Between Vectors; Chapter 3: Vector Space Model for Texts and the tf-idf Measure
متن يادداشت
3.1 Features for Text Represented in Vector Space Model3.2 Values of Text Features: tf-idf; 3.3 Term-Document Matrix; 3.4 Traditional n-grams as Features in Vector Space Model; Chapter 4: Latent Semantic Analysis (LSA): Reduction of Dimensions; 4.1 Idea of the Latent Semantic Analysis; 4.2 Examples of the Application of the Latent Semantic Analysis; 4.3 Usage of the Latent Semantic Analysis; Chapter 5: Design of Experiments in Computational Linguistics; 5.1 Machine Learning in Computational Linguistics; 5.2 Basic Concepts in the Design of Experiments; 5.3 Design of Experiments
متن يادداشت
8.3 Example of Continuous Syntactic n-grams in Spanish8.4 Example of Continuous Syntactic n-grams in English; Chapter 9: Types of Syntactic n-grams According to their Components; 9.1 n-grams of Lexical Elements; 9.2 n-grams of POS Tags; 9.3 n-grams of Syntactic Relations Tags; 9.4 n-grams of Characters; 9.5 Mixed n-grams; 9.6 Classification of n-grams According to their Components; Chapter 10: Continuous and Noncontinuous Syntactic n-grams; 10.1 Continuous Syntactic n-grams; 10.2 Noncontinuous Syntactic n-grams; Chapter 11: Metalanguage of Syntactic n-gram Representation
متن يادداشت
Chapter 12: Examples of Construction of Non-continuous Syntactic n-grams12.1 Example for Spanish; 12.2 Example for English; Chapter 13: Automatic Analysis of Authorship Using Syntactic n-grams; 13.1 Corpus Preparation for the Automatic Authorship Attribution Task; 13.2 Evaluation of the Authorship Attribution Task Using Syntactic n-grams; Chapter 14: Filtered n-grams; 14.1 Idea of Filtered n-grams; 14.2 Example of Filtered n-grams; 14.3 Filtered n-grams of Characters; Chapter 15: Generalized n-grams; 15.1 Idea of Generalized n-grams; 15.2 Example of Generalized n-grams; Bibliography
متن يادداشت
Chapter 6: Example of Application of n-grams: Authorship Attribution Using Syllables6.1 Authorship Attribution Task; 6.2 Related Work; 6.3 Syllables and Their Use in Authorship Attribution; 6.4 Untyped and Typed Syllables; 6.5 Datasets; 6.6 Automatic Syllabification; 6.7 Experimental Methodology; 6.8 Experimental Results; Chapter 7: Deep Learning and Vector Space Model; Part II: Non-linear Construction of n-grams; Chapter 8: Syntactic n-grams: The Concept; 8.1 The Idea of Syntactic n-grams; 8.2 Previous Ideas Related to Application of Syntactic Information
بدون عنوان
0
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This book is about a new approach in the field of computational linguistics related to the idea of constructing n-grams in non-linear manner, while the traditional approach consists in using the data from the surface structure of texts, i.e., the linear structure. In this book, we propose and systematize the concept of syntactic n-grams, which allows using syntactic information within the automatic text processing methods related to classification or clustering. It is a very interesting example of application of linguistic information in the automatic (computational) methods. Roughly speaking, the suggestion is to follow syntactic trees and construct n-grams based on paths in these trees. There are several types of non-linear n-grams; future work should determine, which types of n-grams are more useful in which natural language processing (NLP) tasks. This book is intended for specialists in the field of computational linguistics. However, we made an effort to explain in a clear manner how to use n-grams; we provide a large number of examples, and therefore we believe that the book is also useful for graduate students who already have some previous background in the field.
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Springer Nature
شماره انبار
com.springer.onix.9783030147716
ویراست دیگر از اثر در قالب دیگر رسانه
عنوان
Syntactic n-grams in computational linguistics.
شماره استاندارد بين المللي کتاب و موسيقي
9783030147709
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Computational linguistics.
موضوع مستند نشده
Semantic computing.
موضوع مستند نشده
Computational linguistics.
موضوع مستند نشده
COMPUTERS-- General.
موضوع مستند نشده
Semantic computing.
مقوله موضوعی
موضوع مستند نشده
COM-- 000000
موضوع مستند نشده
UYQL
موضوع مستند نشده
UYQL
رده بندی ديویی
شماره
006
.
3/5
ويراست
23
رده بندی کنگره
شماره رده
P98
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )