Elliptic differential operators and spectral analysis /
نام عام مواد
[Book]
نام نخستين پديدآور
David E. Edmunds, W. Desmond Evans.
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Cham :
نام ناشر، پخش کننده و غيره
Springer,
تاریخ نشرو بخش و غیره
2018.
مشخصات ظاهری
نام خاص و کميت اثر
1 online resource
فروست
عنوان فروست
Springer monographs in mathematics
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references and index.
یادداشتهای مربوط به مندرجات
متن يادداشت
Intro; Preface; Contents; Basic Notation; 1 Preliminaries; 1.1 Integration; 1.2 Functional Analysis; 1.3 Function Spaces; 1.3.1 Spaces of Continuous Functions; 1.3.2 Sobolev Spaces; 1.4 The Hilbert and Riesz Transforms; 2 The Laplace Operator; 2.1 Mean Value Inequalities; 2.2 Representation of Solutions; 2.3 Dirichlet Problems: The Method of Perron; 2.4 Notes; 3 Second-Order Elliptic Equations; 3.1 Basic Notions; 3.2 Maximum Principles; 4 The Classical Dirichlet Problem for Second-Order Elliptic Operators; 4.1 Preamble; 4.2 The Poisson Equation; 4.3 More General Elliptic Operators; 4.4 Notes
متن يادداشت
10.3 Results Involving the Laplace Operator10.4 The p-Laplacian; 11 More Properties of Sobolev Embeddings; 11.1 The Distance Function; 11.2 Nuclear Maps; 11.3 Asymptotic Formulae for Approximation Numbers of Sobolev Embeddings; 11.4 Spaces with Variable Exponent; 11.5 Notes; 12 The Dirac Operator; 12.1 Preamble; 12.2 The Dirac Equation; 12.3 The Free Dirac Operator; 12.4 The Brown-Ravenhall Operator; 12.5 Sums of Operators and Coulomb Potentials; 12.5.1 The Case A= mathbbD; 12.5.2 The Case A = mathbbH; 12.5.3 The Case A= mathbbB; 12.6 The Free Dirac Operator on a Bounded Domain
متن يادداشت
5 Elliptic Operators of Arbitrary Order5.1 Preliminaries; 5.2 Gårding's Inequality; 5.3 The Dirichlet Problem; 5.4 A Little Regularity Theory; 5.5 Eigenvalues of the Laplacian; 5.6 Spectral Independence; 5.7 Notes; 6 Operators and Quadratic Forms in Hilbert Space; 6.1 Self-Adjoint Extensions of Symmetric Operators; 6.2 Characterisations of Self-Adjoint Extensions; 6.2.1 Linear Relations; 6.2.2 Boundary Triplets; 6.2.3 Gamma Fields and Weyl Functions; 6.3 The Friedrichs Extension; 6.4 The Krein-Vishik-Birman (KVB) Theory; 6.5 Adjoint Pairs and Closed Extensions; 6.6 Sectorial Operators
متن يادداشت
7.3.3 Limit-Point and Limit-Circle Criteria7.4 Coercive Sectorial Operators; 7.4.1 The Case dim(kerT*) =2.; 7.5 Realisations of Second-Order Elliptic Operators on Domains; 7.6 Notes; 8 The Lp Approach to the Laplace Operator; 8.1 Preamble; 8.2 Technical Results; 8.3 Existence of a Weak Lp Solution; 8.4 Other Procedures; 8.5 Notes; 9 The p-Laplacian; 9.1 Preamble; 9.2 Preliminaries; 9.3 The Dirichlet Problem; 9.4 An Eigenvalue Problem; 9.5 More About the First Eigenvalue; 9.6 Notes; 10 The Rellich Inequality; 10.1 Preamble; 10.2 The Mean Distance Function
بدون عنوان
0
بدون عنوان
8
بدون عنوان
8
بدون عنوان
8
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
This book deals with elliptic differential equations, providing the analytic background necessary for the treatment of associated spectral questions, and covering important topics previously scattered throughout the literature. Starting with the basics of elliptic operators and their naturally associated function spaces, the authors then proceed to cover various related topics of current and continuing importance. Particular attention is given to the characterisation of self-adjoint extensions of symmetric operators acting in a Hilbert space and, for elliptic operators, the realisation of such extensions in terms of boundary conditions. A good deal of material not previously available in book form, such as the treatment of the Schauder estimates, is included. Requiring only basic knowledge of measure theory and functional analysis, the book is accessible to graduate students and will be of interest to all researchers in partial differential equations. The reader will value its self-contained, thorough and unified presentation of the modern theory of elliptic operators.--
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Springer Nature
شماره انبار
com.springer.onix.9783030021252
ویراست دیگر از اثر در قالب دیگر رسانه
عنوان
Elliptic differential operators and spectral analysis.
شماره استاندارد بين المللي کتاب و موسيقي
9783030021245
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Differential equations, Elliptic.
موضوع مستند نشده
Differential operators.
موضوع مستند نشده
Functional Analysis.
موضوع مستند نشده
Operator Theory.
موضوع مستند نشده
Ordinary Differential Equations.
موضوع مستند نشده
Partial Differential Equations.
موضوع مستند نشده
Differential calculus & equations.
موضوع مستند نشده
Differential equations, Elliptic.
موضوع مستند نشده
Differential operators.
موضوع مستند نشده
Functional analysis & transforms.
موضوع مستند نشده
MATHEMATICS-- Calculus.
موضوع مستند نشده
MATHEMATICS-- Mathematical Analysis.
مقوله موضوعی
موضوع مستند نشده
MAT-- 005000
موضوع مستند نشده
MAT-- 034000
موضوع مستند نشده
PBKJ
موضوع مستند نشده
PBKJ
رده بندی ديویی
شماره
515
.
353
ويراست
23
رده بندی کنگره
شماره رده
QA377
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )