Chapman & Hall/CRC texts in statistical science series
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references and index
یادداشتهای مربوط به مندرجات
متن يادداشت
Introduction -- Linear models -- Ridge regression and principal component analysis -- Linear smoothers -- Generalized linear models -- Additive models -- Penalized regression models -- Neural networks -- Dimensionality reduction -- Computation in practice
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
A Computational Approach to Statistical Learning gives a novel introduction to predictive modeling by focusing on the algorithmic and numeric motivations behind popular statistical methods. The text contains annotated code to over 80 original reference functions. These functions provide minimal working implementations of common statistical learning algorithms. Every chapter concludes with a fully worked out application that illustrates predictive modeling tasks using a real-world dataset. The text begins with a detailed analysis of linear models and ordinary least squares. Subsequent chapters explore extensions such as ridge regression, generalized linear models, and additive models. The second half focuses on the use of general-purpose algorithms for convex optimization and their application to tasks in statistical learning. Models covered include the elastic net, dense neural networks, convolutional neural networks (CNNs), and spectral clustering. A unifying theme throughout the text is the use of optimization theory in the description of predictive models, with a particular focus on the singular value decomposition (SVD). Through this theme, the computational approach motivates and clarifies the relationships between various predictive models. Taylor Arnold is an assistant professor of statistics at the University of Richmond. His work at the intersection of computer vision, natural language processing, and digital humanities has been supported by multiple grants from the National Endowment for the Humanities (NEH) and the American Council of Learned Societies (ACLS). His first book, Humanities Data in R, was published in 2015. Michael Kane is an assistant professor of biostatistics at Yale University. He is the recipient of grants from the National Institutes of Health (NIH), DARPA, and the Bill and Melinda Gates Foundation. His R package bigmemory won the Chamber's prize for statistical software in 2010. Bryan Lewis is an applied mathematician and author of many popular R packages, including irlba, doRedis, and threejs
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Ingram Content Group
شماره انبار
9781351694759
ویراست دیگر از اثر در قالب دیگر رسانه
عنوان
Computational approach to statistical learning.
شماره استاندارد بين المللي کتاب و موسيقي
9781138046375
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Estimation theory.
موضوع مستند نشده
Machine learning-- Mathematics.
موضوع مستند نشده
Mathematical statistics.
موضوع مستند نشده
BUSINESS & ECONOMICS-- Statistics.
موضوع مستند نشده
COMPUTERS-- General.
موضوع مستند نشده
COMPUTERS-- Machine Theory.
موضوع مستند نشده
Estimation theory.
موضوع مستند نشده
Mathematical statistics.
مقوله موضوعی
موضوع مستند نشده
BUS-- 061000
موضوع مستند نشده
COM-- 000000
موضوع مستند نشده
COM-- 037000
موضوع مستند نشده
UKC
رده بندی ديویی
شماره
006
.
31015195
ويراست
23
رده بندی کنگره
شماره رده
Q325
.
5
نشانه اثر
.
A76
2019eb
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )