1 Introduction -- 2 Foundations of R -- 3 Managing Data in R -- 4 Data Visualization -- 5 Linear Algebra & Matrix Computing -- 6 Dimensionality Reduction -- 7 Lazy Learning: Classification Using Nearest Neighbors -- 8 Probabilistic Learning: Classification Using Naive Bayes -- 9 Decision Tree Divide and Conquer Classification -- 10 Forecasting Numeric Data Using Regression Models -- 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines -- 12 Apriori Association Rules Learning -- 13 k-Means Clustering -- 14 Model Performance Assessment -- 15 Improving Model Performance -- 16 Specialized Machine Learning Topics -- 17 Variable/Feature Selection -- 18 Regularized Linear Modeling and Controlled Variable Selection -- 19 Big Longitudinal Data Analysis -- 20 Natural Language Processing/Text Mining -- 21 Prediction and Internal Statistical Cross Validation -- 22 Function Optimization -- 23 Deep Learning Neural Networks -- 24 Summary -- 25 Glossary -- 26 Index -- 27 Errata.
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Over the past decade, Big Data have become ubiquitous in all economic sectors, scientific disciplines, and human activities. They have led to striking technological advances, affecting all human experiences. Our ability to manage, understand, interrogate, and interpret such extremely large, multisource, heterogeneous, incomplete, multiscale, and incongruent data has not kept pace with the rapid increase of the volume, complexity and proliferation of the deluge of digital information. There are three reasons for this shortfall. First, the volume of data is increasing much faster than the corresponding rise of our computational processing power (Kryder's law> Moore's law). Second, traditional discipline-bounds inhibit expeditious progress. Third, our education and training activities have fallen behind the accelerated trend of scientific, information, and communication advances.^There are very few rigorous instructional resources, interactive learning materials, and dynamic training environments that support active data science learning. The textbook balances the mathematical foundations with dexterous demonstrations and examples of data, tools, modules and workflows that serve as pillars for the urgently needed bridge to close that supply and demand predictive analytic skills gap. Exposing the enormous opportunities presented by the tsunami of Big data, this textbook aims to identify specific knowledge gaps, educational barriers, and workforce readiness deficiencies. Specifically, it focuses on the development of a transdisciplinary curriculum integrating modern computational methods, advanced data science techniques, innovative biomedical applications, and impactful health analytics.^The content of this graduate-level textbook fills a substantial gap in integrating modern engineering concepts, computational algorithms, mathematical optimization, statistical computing and biomedical inference. Big data analytic techniques and predictive scientific methods demand broad transdisciplinary knowledge, appeal to an extremely wide spectrum of readers/learners, and provide incredible opportunities for engagement throughout the academy, industry, regulatory and funding agencies.
یادداشتهای مربوط به سفارشات
منبع سفارش / آدرس اشتراک
Springer Nature
شماره انبار
com.springer.onix. 9783319723471
ویراست دیگر از اثر در قالب دیگر رسانه
شماره استاندارد بين المللي کتاب و موسيقي
9783319723464
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Big data.
موضوع مستند نشده
Mathematical statistics.
موضوع مستند نشده
Medical records-- Data processing.
موضوع مستند نشده
R (Computer program language)
موضوع مستند نشده
Big Data.
موضوع مستند نشده
Big Data/Analytics.
موضوع مستند نشده
Data Mining and Knowledge Discovery.
موضوع مستند نشده
Health Informatics.
موضوع مستند نشده
Probability and Statistics in Computer Science.
موضوع مستند نشده
Big data.
موضوع مستند نشده
Business & Economics-- Industries-- Computer Industry.
موضوع مستند نشده
Business mathematics & systems.
موضوع مستند نشده
Computers-- Database Management-- Data Mining.
موضوع مستند نشده
Computers-- Database Management-- General.
موضوع مستند نشده
Computers-- Mathematical & Statistical Software.
موضوع مستند نشده
Data mining.
موضوع مستند نشده
Databases.
موضوع مستند نشده
Mathematical statistics.
موضوع مستند نشده
Maths for computer scientists.
موضوع مستند نشده
Medical equipment & techniques.
موضوع مستند نشده
Medical-- General.
موضوع مستند نشده
Medical records-- Data processing.
موضوع مستند نشده
R (Computer program language)
مقوله موضوعی
موضوع مستند نشده
COM021000
موضوع مستند نشده
UN
موضوع مستند نشده
UN
رده بندی ديویی
شماره
005
.
7
ويراست
23
رده بندی کنگره
شماره رده
QA76
.
9
.
B45
نشانه اثر
D56
2018
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )