Feature Selection of PERSIANN, based on Multiple Regression Analysis with Principal Component Analysis and Using Three-Cornered Hat method to evaluate Precipitation products
نام عام مواد
[Thesis]
نام نخستين پديدآور
Ata Akbari Asanjan
نام ساير پديدآوران
Sorooshian, Soroosh; Gao, Xiaogang
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
University of California, Irvine
تاریخ نشرو بخش و غیره
2016
مشخصات ظاهری
نام خاص و کميت اثر
34
يادداشت کلی
متن يادداشت
Committee members: Hsu, Kuo-Lin
یادداشتهای مربوط به نشر، بخش و غیره
متن يادداشت
Place of publication: United States, Ann Arbor; ISBN=978-1-339-78425-0
یادداشتهای مربوط به پایان نامه ها
جزئيات پايان نامه و نوع درجه آن
M.S.
نظم درجات
Civil Engineering
کسي که مدرک را اعطا کرده
University of California, Irvine
امتياز متن
2016
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
My thesis addresses two aspects of satellite precipitation estimation. In the first chapter, feature selection aspect of PERSIANN algorithm will be discussed. In the second chapter, the Generalized Three-Cornered Hat method is used for intercomparison of PERSIANN-CDR and TRMM and CRU datasets over Iran. For this part, a part of author's collaboration with Professor Katiraie of Azad University, Tehran (Corresponding author: Katiraie-Boroujerdy) will be represented. Chapter three presents the summary and conclusions. The PERSIANN model is an Artificial Neural Network-based (ANN) model for precipitation estimation using satellite information, and the datasets generated by it have gained popularity for application in both weather and climate studies. Research related to the PERSIANN system is ongoing, and it mainly focuses on improving its accuracy required for various applications. One of these improvements in the system includes the input feature selection of the model which can help the Neural Network to better learn the precipitation pattern by adding more relevant information. The Multiple Regression Analysis (MRA), by taking the advantage of Principal Component Analysis (PCA) to solve the collinearity is employed as the framework for ranking those features or inputs that are most useful for the learning process.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Civil engineering; Water Resource Management
اصطلاحهای موضوعی کنترل نشده
اصطلاح موضوعی
Applied sciences;Earth sciences;Feature selection;Multiple regression analysis;Percipitation;Persiann;Principal component analysis;Three-cornered hat
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )