Using social network analysis for civil infrastructure management
نام عام مواد
[Thesis]
نام نخستين پديدآور
Eric Vechan
نام ساير پديدآوران
Truax, Dennis D.; El-adaway, Islam H.
وضعیت نشر و پخش و غیره
نام ناشر، پخش کننده و غيره
Mississippi State University
تاریخ نشرو بخش و غیره
2015
مشخصات ظاهری
نام خاص و کميت اثر
126
يادداشت کلی
متن يادداشت
Committee members: Gude, Vera G.; Keith, Jason M.; Martin, James L.; White, Thomas D.
یادداشتهای مربوط به نشر، بخش و غیره
متن يادداشت
Place of publication: United States, Ann Arbor; ISBN=978-1-321-95964-2
یادداشتهای مربوط به پایان نامه ها
جزئيات پايان نامه و نوع درجه آن
Ph.D.
نظم درجات
Civil and Environmental Engineering
کسي که مدرک را اعطا کرده
Mississippi State University
امتياز متن
2015
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
It is essential to build, maintain, and use our transportation systems in a manner that meets our current needs while addressing the social and economic needs of future generations. In today's world, transportation congestion causes serious negative impacts to our societies. To this end, researchers have been utilizing various statistical methods to better study the flow of traffic into the road networks. However, these valuable studies cannot realize their true potential without solid in-depth understanding of the connectivity between the various traffic intersections. This paper bridges the gap between the engineering and social science domains. To this end, the authors propose a dynamic social network analysis framework to study the centrality of the existing road networks. This approach utilizes the field of network analysis where: (1) visualization and modeling techniques allow capturing the relationships, interactions, and attributes of and between network constituents, and (2) mathematical measurements facilitate analyzing quantitative relationships within the network. Connectivity and the importance of each intersection within the network will be understood using this method. The author conducted social network analysis modeling using three studies in Louisiana and two studies in Mississippi. Four types of centrality analysis were performed to identify the most central and important intersections within each study area. Results indicate intersection social network analysis modeling aligns with current congestion studies and transportation planning decisions.