1. Introduction to Linear Elliptic Problems.- 1.1. The Lax-Milgram theorem.- 1.2. Elementary notions on Sobolev spaces.- 1.3. Applications to linear elliptic problems.- 2. Some Model Techniques.- 2.1. The case of lateral Dirichlet boundary conditions on a rectangle.- 2.2. The case of lateral Neumann boundary conditions on a rectangle.- 2.3. The case of lateral Dirichlet boundary conditions revisited.- 2.4. A different point of view.- Open problems.- 3. A General Asymptotic Theory for Linear Elliptic Problems.- 3.1. A general convergence result in H1 (S24,).- 3.2. A sharper rate of convergence.- 3.3. Convergence in higher Sobolev spaces.- Open problems.- 4. Nonlinear Elliptic Problems.- 4.1. Variational inequalities.- 4.2. Quasilinear elliptic problems.- 4.3. Strongly nonlinear problems.- Open problems.- 5. Asymptotic Behaviour of some Nonlinear Elliptic Problems.- 5.1. The case of variational inequalities.- 5.2. The case of quasilinear problems.- Open problems.- 6. Elliptic Systems.- 6.1. Some inequalities.- 6.2. Existence results for linear elliptic systems.- 6.3. Nonlinear elliptic systems.- Open problems.- 7. Asymptotic Behaviour of Elliptic Systems.- 7.1. The case of linear elliptic systems satisfying the Legendre condition.- 7.2. The system of elasticity.- Open problems.- 8. Parabolic Equations.- 8.1. Functional spaces for parabolic problems.- 8.2. Linear parabolic problems.- 8.3. Nonlinear parabolic problems.- 9. Asymptotic Behaviour of Parabolic Problems.- 9.1. The linear case.- 9.2. A nonlinear case.- Open problems.- Concluding Remark.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Asymptotisches Lösungsverhalten
موضوع مستند نشده
Differential equations, Elliptic.
موضوع مستند نشده
Partielle Differentialgleichung
رده بندی کنگره
شماره رده
QA377
نشانه اثر
.
M534
2002
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )