یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references and index
یادداشتهای مربوط به مندرجات
متن يادداشت
Machine generated contents note: pt. I Viscoelastic and viscoplastic modeling -- 1.Viscoelastic constitutive modeling of creep and stress relaxation in polymers and polymer matrix composites / S. P. Zaoutsos -- 1.1.Introduction -- 1.2.Creep -- 1.3.Linearity -- 1.4.The time-temperature superposition principle (TTSP) -- 1.5.The time-stress superposition principle (TSSP) -- 1.6.The time-temperature-stress superposition principle (TTSSP) -- 1.7.Linear viscoelastic models -- 1.8.Nonlinear viscoelastic behavior -- 1.9.References -- 2.Time-temperature-age superposition principle for predicting long-term response of linear viscoelastic materials / E. J. Barbero -- 2.1.Correlation of short-term data -- 2.2.Time-temperature superposition -- 2.3.Time-age superposition -- 2.4.Effective time theory -- 2.5.Summary -- 2.6.Temperature compensation -- 2.7.Conclusions -- 2.8.References -- 3.Time-dependent behavior of active/intelligent polymer matrix composites incorporating piezoceramic fibers / A. Muliana -- 3.1.Introduction -- 3.2.Linearized time-dependent model for materials with electromechanical coupling -- 3.3.Simplified micromechanical model of homogenized active polymer matrix composites (PMCs) -- 3.4.FE models of representative volume elements (RVEs) of the active PMCs -- 3.5.Effective electromechanical and piezoelectric properties -- 3.6.Applications of active PMCs as actuators -- 3.7.Conclusions -- 3.8.Acknowledgement -- 3.9.References -- 4.Predicting the elastic-viscoplastic and creep behaviour of polymer matrix composites using the homogenization theory / N. Ohno -- 4.1.Introduction -- 4.2.Homogenization theory for non-linear time-dependent composites -- 4.3.Elastic-viscoplastic analysis of CFRP laminates and experimental verification -- 4.4.Elastic-viscoplastic analysis of plain-woven GFRP laminates and experimental verification -- 4.5.Creep analysis of unidirectional CFRP laminates at elevated temperature -- 4.6.Summary -- 4.7.References -- 5.Measuring fiber strain and creep behavior in polymer matrix composites using Raman spectroscopy / T. Miyake -- 5.1.Introduction: creep mechanism of composites reinforced unidirectionally with long fibers -- 5.2.Stress or strain measurement by Raman spectroscopy -- 5.3.Experiments on stress relaxation in broken fibers -- 5.4.Time-dependent variation in fiber stress during pull-out tests -- 5.5.Discussion -- 5.6.Summary -- 5.7.References -- 6.Predicting the viscoelastic behavior of polymer nanocomposites / C. C. Ibeh -- 6.1.Specific features of nanoparticles and nanocomposites -- 6.2.Viscoelasticity of polymer matrix -- 6.3.Viscoelasticity of polymers filled by quasi-spherical nanoparticles -- 6.4.Viscoelasticity of polymers filled by platelet-shape nanoparticles -- 6.5.Viscoelasticity of polymers filled by nanofibers -- 6.6.Viscoelasticity of polymers filled by buckyballs and nanotubes -- 6.7.Viscoelasticity of nanoporous polymers -- 6.8.Viscoelasticity of fibrous composites with nano-filled matrices -- 6.9.Concluding remarks -- 6.10.Notation -- 6.11.Acknowledgement -- 6.12.References -- 7.Constitutive modeling of viscoplastic deformation of polymer matrix composites / M. Kawai -- 7.1.Introduction -- 7.2.Framework for constitutive modeling of the viscoplastic deformation of anisotropic materials -- 7.3.Modeling of tension-compression asymmetry in initial anisotropy -- 7.4.Modeling of transient creep softening due to stress variation -- 7.5.Conclusions -- 7.6.Future trends -- 7.7.Acknowledgements -- 7.8.References -- 8.Creep analysis of polymer matrix composites using viscoplastic models / E. Kontou -- 8.1.Introduction -- 8.2.Viscoplastic creep modeling for polymer composites -- 8.3.Concluding remarks -- 8.4.Future trends -- 8.5.References -- 9.Micromechanical modeling of viscoelastic behavior of polymer matrix composites undergoing large deformations / J. Aboudi -- 9.1.Introduction -- 9.2.Finite strain viscoelasticity coupled with damage model of monolithic materials -- 9.3.Finite strain micromechanical analysis -- 9.4.Computational procedure -- 9.5.Applications -- 9.6.Conclusions -- 9.7.References -- pt. II Creep rupture -- 10.Fibre bundle models for creep rupture analysis of polymer matrix composites / F. Kun -- 10.1.Introduction -- 10.2.Fibre bundle model -- 10.3.Fibre bundle models for creep rupture -- 10.4.Summary and outlook -- 10.5.Acknowledgement -- 10.6.References -- 11.Micromechanical modeling of time-dependent failure in off-axis polymer matrix composites / J. Koyanagi -- 11.1.Introduction -- 11.2.Experiments -- 11.3.Finite element analysis -- 11.4.Discussion -- 11.5.Conclusion -- 11.6.Future trends -- 11.7.References -- 12.Time-dependent failure criteria for lifetime prediction of polymer matrix composite structures / R. M. Guedes -- 12.1.Introduction -- 12.2.Energy-based failure criteria -- 12.3.Creep rupture based on simple micromechanical models -- 12.4.Experimental cases -- 12.5.The Crochet model (time-dependent yielding model) -- 12.6.Kinetic rate theory -- 12.7.Fracture mechanics extended to viscoelastic materials -- 12.8.Continuum damage mechanics -- 12.9.Damage accumulation models for static (creep) and dynamic fatigue -- 12.10.Conclusions -- 12.11.References -- pt. III Fatigue modeling, characterization and monitoring -- 13.Testing the fatigue strength of fibers used in fiber-reinforced composites using fiber bundle tests / P. K. Mallick -- 13.1.Introduction -- 13.2.Determination of fiber strength distribution parameters -- 13.3.Fiber bundle model for fatigue -- 13.4.Stress-life diagram of fiber bundles -- 13.5.Conclusion -- 13.6.References -- 14.Continuum damage mechanical modeling of creep damage and fatigue in polymer matrix composites / F. Thiebaud -- 14.1.Introduction -- 14.2.Mesomodel: viscoelastic strain, damage and viscoplastic strain of a layer -- 14.3.From meso- to macroscopic behavior -- 14.4.Conclusion -- 14.5.References -- 15.Accelerated testing methodology for predicting long-term creep and fatigue in polymer matrix composites / M. Nakada -- 15.1.Introduction -- 15.2.Accelerated testing methodology -- 15.3.Experimental verification for ATM -- 15.4.Applicability of ATM -- 15.5.Theoretical verification of ATM -- 15.6.Future trends and research -- 15.7.Conclusions -- 15.8.References -- 16.Fatigue testing methods for polymer matrix composites / W. Van Paepegem -- 16.1.Introduction -- 16.2.Fatigue testing methods -- 16.3.Effect of boundary conditions and specimen geometry -- 16.4.Typical fatigue damage in structural composites -- 16.5.Future trends -- 16.6.Sources of further information and advice -- 16.7.References -- 17.The effect of viscoelasticity on fatigue behaviour of polymer matrix composites / J. A. Epaarachchi -- 17.1.Introduction -- 17.2.Linear viscoelastic analysis of the characteristics of viscoelastic materials under static and dynamic loading -- 17.3.Fatigue behaviour of composite materials -- 17.4.Concluding remarks -- 17.5.Acknowledgements -- 17.6.References -- 18.Characterization of vicoelasticity, viscoplasticity and damage in composites / J. Varna -- 18.1.Introduction -- 18.2.Material model -- 18.3.Microdamage effect on stiffness -- 18.4.Viscoplasticity -- 18.5.Nonlinear viscoelasticity -- 18.6.Conclusions -- 18.7.References -- 18.8.Appendix: time-dependence of VP-strain in a creep test -- 19.Structural health monitoring of composite structures for durability / S. Alampalli -- 19.1.Introduction -- 19.2.FRP structures in the bridge industry -- 19.3.Structural health monitoring -- 19.4.FRP structures and SHM -- 19.5.Case studies -- 19.6.Summary -- 19.7.References