Statistical methods for dynamic treatment regimes :
نام عام مواد
[Book]
ساير اطلاعات عنواني
reinforcement learning, causal inference, and personalized medicine /
نام نخستين پديدآور
Bibhas Chakraborty, Erica E.M. Moodie
مشخصات ظاهری
نام خاص و کميت اثر
1 online resource (xvi, 204 pages) :
ساير جزييات
illustrations
فروست
عنوان فروست
Statistics for biology and health,
شاپا ي ISSN فروست
1431-8776
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references and index
یادداشتهای مربوط به مندرجات
متن يادداشت
The Data: Observational Studies and Sequentially Randomized Trials -- Statistical Reinforcement Learning -- Estimation of Optimal DTRs by Modeling Contrasts of Conditional Mean Outcomes -- Estimation of Optimal DTRs by Directly Modeling Regimes -- G-computation: Parametric Estimation of Optimal DTRs -- Estimation DTRs for Alternative Outcome Types -- Inference and Non-regularity -- Additional Considerations and Final Thoughts
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Statistical Methods for Dynamic Treatment Regimes shares state of the art of statistical methods developed to address questions of estimation and inference for dynamic treatment regimes, a branch of personalized medicine. This volume demonstrates these methods with their conceptual underpinnings and illustration through analysis of real and simulated data. These methods are immediately applicable to the practice of personalized medicine, which is a medical paradigm that emphasizes the systematic use of individual patient information to optimize patient health care. This is the first single source to provide an overview of methodology and results gathered from journals, proceedings, and technical reports with the goal of orienting researchers to the field. The first chapter establishes context for the statistical reader in the landscape of personalized medicine. Readers need only have familiarity with elementary calculus, linear algebra, and basic large-sample theory to use this text. Throughout the text, authors direct readers to available code or packages in different statistical languages to facilitate implementation. In cases where code does not already exist, the authors provide analytic approaches in sufficient detail that any researcher with knowledge of statistical programming could implement the methods from scratch. This will be an important volume for a wide range of researchers, including statisticians, epidemiologists, medical researchers, and machine learning researchers interested in medical applications. Advanced graduate students in statistics and biostatistics will also find material in Statistical Methods for Dynamic Treatment Regimes to be a critical part of their studies
قطعه
عنوان
OhioLINK electronic book center (Online)
عنوان
SpringerLink
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Medical records-- Data processing
موضوع مستند نشده
Medical statistics
مقوله موضوعی
موضوع مستند نشده
MBNS
موضوع مستند نشده
MED090000
موضوع مستند نشده
PBT
رده بندی ديویی
شماره
610
.
72/7
ويراست
23
رده بندی کنگره
شماره رده
RA409
شماره رده
RA409
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )