Composition operators and classical function theory /
نام عام مواد
[Book]
نام نخستين پديدآور
Joel H. Shapiro
مشخصات ظاهری
نام خاص و کميت اثر
xiii, 223 pages :
ساير جزييات
illustrations ;
ابعاد
24 cm
فروست
عنوان فروست
Universitext. Tracts in mathematics
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references and indexes
یادداشتهای مربوط به مندرجات
متن يادداشت
0. Linear Fractional Prologue -- 1. Littlewood's Theorem -- 2. Compactness: Introduction -- 3. Compactness and Univalence -- 4. The Angular Derivative -- 5. Angular Derivatives and Iteration -- 6. Compactness and Eigenfunctions -- 7. Linear Fractional Cyclicity -- 8. Cyclicity and Models -- 9. Compactness from Models -- 10. Compactness: General Case
بدون عنوان
2
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
The study of composition operators forges links between fundamental properties of linear operators and beautiful results from the classical theory of analytic functions. This book provides a self-contained introduction to both the subject and its function-theoretic underpinnings. The development is geometrically motivated, and accessible to anyone who has studied basic graduate-level real and complex analysis. The work explores how operator-theoretic issues such as boundedness, compactness, and cyclicity evolve - in the setting of composition operators on the Hilbert space H2 into questions about subordination, value distribution, angular derivatives, iteration, and functional equations. Each of these classical topics is developed fully, and particular attention is paid to their common geometric heritage as descendants of the Schwarz Lemma
ویراست دیگر از اثر در قالب دیگر رسانه
عنوان
Composition operators and classical function theory.
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Composition operators
موضوع مستند نشده
Geometric function theory
رده بندی ديویی
شماره
515/
.
7246
ويراست
20
رده بندی کنگره
شماره رده
QA329
.
2
نشانه اثر
.
S48
1993
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )