یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Includes bibliographical references (pages 429-461) and index
یادداشتهای مربوط به مندرجات
متن يادداشت
Introduction -- Logical foundations -- Avoiding Russell's paradox -- Further axioms -- Relations and order -- Ordinal numbers and the axiom of infinity -- Infinite arithmetic -- Cardinal numbers -- The axiom of choice and the continuum hypothesis -- Models -- From Gödel to Cohen. Peano arithmetic ; Zermelo-Fraenkel set theory ; Gödel's incompleteness theorems -- Bibliography -- Index
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Few mathematical results capture the imagination like Georg Cantor's groundbreaking work on infinity in the late nineteenth century. This opened the door to an intricate axiomatic theory of sets which was born in the decades that followed. Written for the motivated novice, this book provides an overview of key ideas in set theory, bridging the gap between technical accounts of mathematical foundations and popular accounts of logic. Readers will learn of the formal construction of the classical number systems, from the natural numbers to the real numbers and beyond, and see how set theory has evolved to analyse such deep questions as the status of the continuum hypothesis and the axiom of choice. Remarks and digressions introduce the reader to some of the philosophical aspects of the subject and to adjacent mathematical topics. The rich, annotated bibliography encourages the dedicated reader to delve into what is now a vast literature. --Provided by publisher
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Logic, Symbolic and mathematical
موضوع مستند نشده
Set theory
رده بندی کنگره
شماره رده
QA248
نشانه اثر
.
S44
2014
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )