I. Density Smoothing -- 1. The Histogram -- 2. Kernel Density Estimation -- 3. Further Density Estimators -- 4. Bandwidth Selection in Practice -- II. Regression Smoothing -- 5. Nonparametric Regression -- 6. Bandwidth Selection -- 7. Simultaneous Error Bars -- Tables -- Solutions -- List of Used S Commands -- Symbols and Notation -- References.
بدون عنوان
0
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
The author has attempted to present a book that provides a non-technical introduction into the area of non-parametric density and regression function estimation. The application of these methods is discussed in terms of the S computing environment. Smoothing in high dimensions faces the problem of data sparseness. A principal feature of smoothing, the averaging of data points in a prescribed neighborhood, is not really practicable in dimensions greater than three if we have just one hundred data points. Additive models provide a way out of this dilemma; but, for their interactiveness and recursiveness, they require highly effective algorithms. For this purpose, the method of WARPing (Weighted Averaging using Rounded Points) is described in great detail.
ویراست دیگر از اثر در قالب دیگر رسانه
شماره استاندارد بين المللي کتاب و موسيقي
9781461287681
قطعه
عنوان
Springer eBooks
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Statistics.
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )