Novel Techniques for Dialectal Arabic Speech Recognition
نام عام مواد
[electronic resources]
نام نخستين پديدآور
\ Mohamed Elmahdy, Rainer Gruhn, Wolfgang Minker
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
New York
نام ناشر، پخش کننده و غيره
: Springer
تاریخ نشرو بخش و غیره
, 2012
مشخصات ظاهری
نام خاص و کميت اثر
xxi, 110p.
ساير جزييات
:ill.
ابعاد
;24 cm.
یادداشتهای مربوط به کتابنامه ، واژه نامه و نمایه های داخل اثر
متن يادداشت
Index
متن يادداشت
Bibliography
یادداشتهای مربوط به خلاصه یا چکیده
متن يادداشت
Novel Techniques for Dialectal Arabic Speech describes approaches to improve automatic speech recognition for dialectal Arabic. Since speech resources for dialectal Arabic speech recognition are very sparse, the authors describe how existing Modern Standard Arabic (MSA) speech data can be applied to dialectal Arabic speech recognition, while assuming that MSA is always a second language for all Arabic speakers. In this book, Egyptian Colloquial Arabic (ECA) has been chosen as a typical Arabic dialect. ECA is the first ranked Arabic dialect in terms of number of speakers, and a high quality ECA speech corpus with accurate phonetic transcription has been collected. MSA acoustic models were trained using news broadcast speech. In order to cross-lingually use MSA in dialectal Arabic speech recognition, the authors have normalized the phoneme sets for MSA and ECA. After this normalization, they have applied state-of-the-art acoustic model adaptation techniques like Maximum Likelihood Linear Regression (MLLR) and Maximum A-Posteriori (MAP) to adapt existing phonemic MSA acoustic models with a small amount of dialectal ECA speech data. Speech recognition results indicate a significant increase in recognition accuracy compared to a baseline model trained with only ECA data--
موضوع (اسم عام یاعبارت اسمی عام)
موضوع مستند نشده
Automatic speech recognition
موضوع مستند نشده
Arabic language
موضوع مستند نشده
صدا -- تشخیص کامپیوتری
موضوع مستند نشده
زبان عربی
رده بندی کنگره
شماره رکورد غير از شماره رده بندي
E-Book
,
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )