Probabilistic graphical models for genetics, genomics, and postgenomics
وضعیت نشر و پخش و غیره
محل نشرو پخش و غیره
Oxford
نام ناشر، پخش کننده و غيره
Oxford University Press
تاریخ نشرو بخش و غیره
2014
مشخصات ظاهری
نام خاص و کميت اثر
xxvii, 449 p.: ill. ; 25 cm
يادداشت کلی
متن يادداشت
Includes bibliographical references and index
یادداشتهای مربوط به عنوان و پدیدآور
متن يادداشت
edited by Christine Sinoquet, editor-in-chief, and Raphael Mourad, Editor
یادداشتهای مربوط به مندرجات
متن يادداشت
pt. I. Introduction -- Probabilistic graphical models for next-generation genomics and genetics -- Essentials to understand probabilistic graphical models : a tutorial about inference and learning -- pt. II. Gene expression -- Graphical models and multivariate analysis of microarray data -- Comparison of mixture Bayesian and mixture regression approaches to infer gene networks -- Network inference in breast cancer with Gaussian graphical models and extensions -- pt. III. Causality discovery -- Utilizing genotypic information as a prior for learning gene networks -- Bayesian causal phenotype network incorporating genetic variation and biological knowledge -- Structural equation models for studying causal phenotype networks in quantitative genetics -- pt. IV. Genetic association studies -- Modeling linkage disequilibrium and performing association studies through probabilistic graphical models : a visiting tour of recent advances -- Modeling linkage disequilibrium with decomposable graphical models -- Scoring, searching and evaluating Bayesian network models of gene-phenotype association -- Graphical modeling of biological pathways in genome-wide association studies -- Bayesian systems-based, multilevel analysis of associations for complex phenotypes : from interpretation to decision -- pt. V. Epigenetics -- Bayesian networks in the study of genome-wide DNA methylation -- Latent variable models for analyzing DNA methylation -- pt. VI. Detection of copy number variations -- Detection of copy number variations from array comparative genomic hybridization data using linear-chain conditional random field models -- pt. VII. Prediction of outcomes from high-dimensional genomic data -- Prediction of clinical outcomes from genome-wide data
موضوع (اسم عام یاعبارت اسمی عام)
عنصر شناسه ای
Statistical methods ، Genomics
عنصر شناسه ای
Statistical methods ، Genetics
عنصر شناسه ای
، Graphical modeling )Statistics(
رده بندی کنگره
شماره رده
QH
438
.
4
.
S73
P76
2014
نام شخص به منزله سر شناسه - (مسئولیت معنوی درجه اول )