An Explicit Method For The Numerical Solution of ODEs
General Material Designation
Dissertation
First Statement of Responsibility
Lenda Ali Akbar Shakir
.PUBLICATION, DISTRIBUTION, ETC
Name of Publisher, Distributor, etc.
Mathematical Sciences
Date of Publication, Distribution, etc.
1401
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
62p.
Other Physical Details
cd.
DISSERTATION (THESIS) NOTE
Dissertation or thesis details and type of degree
M.S.
Discipline of degree
APPLIED MATHEMATICS
Date of degree
1401/11/19
SUMMARY OR ABSTRACT
Text of Note
In this dissertation, a novel generalized like a Taylor, being overt approach ordinarydifferential equations (ODEs) that are difficult to solve investigated. ODEs aredifferential equations that describe physical phenomena. A discussion is had on the erroranalysis and the stability analysis of the offered approaches. It has been shown that theseapproaches possess the L-stability characteristic in addition to having arbitrarily highorders of convergence. It has been shown that the suggested approaches are moreaccurate than other ways of a similar nature by applying them to various challengingissues and comparing the numerical results obtained with those obtained by othermethods of a similar kind.
Text of Note
در این پایان نامه، یک روش صریح شبه تیلور تعمیم یافته جدید برای حل معادلات دیفرانسیل معمولی سخت مطالعه شدهاست. تجزیه و تحلیل خطا و پایداری این روشها مورد بحث قرار گرفته است . نشان داده شده است که این روشها مرتبهبالایی از همگرایی و خاصیت -Lپایداری دارند. با بکار بردن این روشها برای برخی از مسائل سخت و مقایسه جوابهایعددی با روشهای مشابه، نشان داده شده است که این روشها بسیار دقیق هستند
OTHER VARIANT TITLES
Variant Title
یک روش صریح شبه تیلور تعمیم یافته جدید برای معادلات دیفرانسیل معمولی سخت