• Home
  • Advanced Search
  • Directory of Libraries
  • About lib.ir
  • Contact Us
  • History
  • ورود / ثبت نام

عنوان
High Accuracy Transportation Traffic Prediction using Hybrid Multimodal Deep Learning Framework

پدید آورنده
Ali Abbas,Abbas,

موضوع
Traffic prediction, traffic forecasting, Deep learning, Long Short Term Memory (LSTM), Gated Recurrent Units (GRU), DNN (deep neural network), Intelligent Transportation Systems (ITS).,پیش‌بینی ترافیک، یادگیری عمیق، حافظه طولانی کوتاه‌مدت (LSTM)، GRU، شبکه عصبی عمیق (DNN) ، سیستم‌های حمل و نقل هوشمند (ITS).

رده

کتابخانه
University of Tabriz Library, Documentation and Publication Center

محل استقرار
استان: East Azarbaijan ـ شهر: Tabriz

University of Tabriz Library, Documentation and Publication Center

تماس با کتابخانه : 04133294120-04133294118

NATIONAL BIBLIOGRAPHY NUMBER

Number
T26751

LANGUAGE OF THE ITEM

.Language of Text, Soundtrack etc
انگلیسی

TITLE AND STATEMENT OF RESPONSIBILITY

Title Proper
High Accuracy Transportation Traffic Prediction using Hybrid Multimodal Deep Learning Framework
General Material Designation
Dissertation
First Statement of Responsibility
Ali Abbas

.PUBLICATION, DISTRIBUTION, ETC

Name of Publisher, Distributor, etc.
Electrical and Computer Engineering
Date of Publication, Distribution, etc.
1401

PHYSICAL DESCRIPTION

Specific Material Designation and Extent of Item
70p.
Other Physical Details
cd

DISSERTATION (THESIS) NOTE

Dissertation or thesis details and type of degree
M.S.
Discipline of degree
Computer engineering, Artificial intelligence
Date of degree
1401/03/03
Body granting the degree
Tabriz

SUMMARY OR ABSTRACT

Text of Note
The growing demand for personal transportation has made the problem of traffic congestion as one of the most important crisis in many of the world's metropolises. Prediction or forecasting and diagnosis of traffic volume are important solutions for intelligent traffic control. So far, various methods have been proposed to solve this problem. Most of them suffer from high computational load and inefficiency in certain situations. In this research, we have created a hybrid network called DGLnet, which is a combination of a DNN and Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU) networks. The presence of this hybrid structure can work well in both forecasting and diagnosis. Our proposed method can predict traffic volume more accurately and therefore traffic lights can be controlled more exactly. The simulation results show that the proposed framework can diagnose traffic with accuracy, 99.27% and improve traffic management, considerably respected to recent methods.
Text of Note
افزایش تقاضا برای حمل‌ونقل شخصی مشکل ترافیک را به مهم‌ترین بحران در بسیاری از کلان‌شهرهای جهان تبدیل کرده است. پیش‌بینی و تشخیص حجم ترافیک راه‌حل‌های مهمی برای کنترل هوشمند ترافیک است. تابه‌حال، روش‌های متعددی برای حل این مشکل پیشنهادشده است. بسیاری از این راهکارها فاقد بار محاسباتی و کارایی لازم در مواقع خاص است. در این تحقیق، یک شبکه تلفیقی موسوم به DGLnet که خود ترکیبی از شبکه‌های DNN و حافظه طولانی کوتاه‌مدت LSTM و GRU پیشنهاد شده است. وجود این ساختار تلفیقی می‌تواند به‌خوبی در راستای پیش بینی و تشخیص عمل کند. نتایج شبیه‌سازی نشان می‌دهد که چارچوب پیشنهادی می‌تواند ترافیک را با دقت 99.27% تشخیص دهد كه افزايش قابل ملاحظه اي را در تشخيص ترافيك نسبت به روشهاي اخير نشان مي دهد.

OTHER VARIANT TITLES

Variant Title
پیش بینی ترافیک حمل و نقل با دقت بالا با استفاده از ساختار ترکیبی چند مودی یادگیری عمیق

UNCONTROLLED SUBJECT TERMS

Subject Term
Traffic prediction, traffic forecasting, Deep learning, Long Short Term Memory (LSTM), Gated Recurrent Units (GRU), DNN (deep neural network), Intelligent Transportation Systems (ITS).
Subject Term
پیش‌بینی ترافیک، یادگیری عمیق، حافظه طولانی کوتاه‌مدت (LSTM)، GRU، شبکه عصبی عمیق (DNN) ، سیستم‌های حمل و نقل هوشمند (ITS).

PERSONAL NAME - PRIMARY RESPONSIBILITY

Entry Element
Abbas,
Part of Name Other than Entry Element
Ali
Relator Code
Producer

PERSONAL NAME - SECONDARY RESPONSIBILITY

Entry Element
Asadpour,
Entry Element
Aghdasi,
Part of Name Other than Entry Element
Mohammad
Part of Name Other than Entry Element
Hadi
Relator Code
Thesis advisor
Relator Code
Consulting advisor

CORPORATE BODY NAME - SECONDARY RESPONSIBILITY

Entry Element
Tabriz

ORIGINATING SOURCE

Country
ایران
Agency
Central library of tabriz
Date of Transaction
20220711

LOCATION AND CALL NUMBER

Call Number
ارشد پایاننامه QA76.A2 1401

ELECTRONIC LOCATION AND ACCESS

Electronic name
Ali Abbas
Contact for access assistance
عبادی

e

TL
276903

a
Y

Proposal/Bug Report

Warning! Enter The Information Carefully
Send Cancel
This website is managed by Dar Al-Hadith Scientific-Cultural Institute and Computer Research Center of Islamic Sciences (also known as Noor)
Libraries are responsible for the validity of information, and the spiritual rights of information are reserved for them
Best Searcher - The 5th Digital Media Festival