رشد ترک خزشی در مخزن استوانه ای از جنس AL7075-T6 تحت بارگذاری پیچشی و گرادیان درجه حرارت
First Statement of Responsibility
فرید مجرد حیدرلو
.PUBLICATION, DISTRIBUTION, ETC
Name of Publisher, Distributor, etc.
مکانیک
Date of Publication, Distribution, etc.
۱۴۰۲
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
۶۷ص.
Accompanying Material
سی دی
DISSERTATION (THESIS) NOTE
Dissertation or thesis details and type of degree
دکتری
Discipline of degree
مهندسی مکانیک گرایش طراحی کاربردی
Date of degree
۱۴۰۲/۰۶/۳۱
SUMMARY OR ABSTRACT
Text of Note
طی سال های اخیر با توجه به کاربرد وسیع مواد فلزی و نیز اهمیت تحلیل ایمنی و افزایش طول عمر اجزای مکانیکی تحت بارگذاری های مختلف از جمله بارگذاری پیچشی، خمشی و فشاری مورد توجه محققان بسیاری قرار گرفته است. از میان کاربردهای آلیاژ های آلومینیومی میتوان در صنایع نظامی و غیر نظامی به بدنه هواپیما، بدنه راکت، اتاقک ایستگاه فضایی وکشتیسازی اشاره کرد. بدنهی این سازهها در غالب موارد به علت مراحل تولید یا استفادهی طولانی دچار ترک میشوند. در نتیجه ضروری است رفتار خزشی ترک در بدنهی این سازهها مورد توجه قرار گیرد چرا که عامل تنش موضعی بسیار زیاد و درجه حرارت بالا با گرادیان شدید موجب رشد سریع ترک در بدنه خواهد شد. همچنین به دلیل اینکه ساختار مخزنی بیشتر سازه ها در معرض پیچش و فشار و گرادیان درجه حرارت بالا قرار می گیرند، بررسی خواص مکانیکی آن ها از نظر رفتار خزشی از اهمیت بالایی برخوردار است. در اين مطالعه، ابتدا هندسه مورد نظر در نرم افزار آباکوس شبیه سازی گردید و سپس هندسه ترک مورد نظر روی سیلندر ایجاد شد و نرخ رشد ترک با استفاده از روش مکانیک شکست محیط پیوسته (CDM) تخمین زده شد. در نهایت، تاثیر پارامترهای مختلف هندسی یا مادی نظیر فشار داخلی، بار پیچشی، شعاع و ضخامت دیواره سیلندر، عمق و طول ترک و وجود گرادیان درجه حرارت در طول دیواره سیلندر روی پارامترC* و نتیجه نرخ رشد ترک مورد بررسی قرار گرفت و نتایج در قالب نمودارهای مختلف ارائه شده است.
Text of Note
1.Eggert, G., Ancient aluminum? Flexible glass? Looking for the real heart of a legend. Skeptical inquirer, 1995. 19(3): p. 37-40.2.Liu, X., et al., Expert system for remnant life prediction of defected components under fatigue and creep–fatigue loadings. Expert Systems with Applications, 2008. 34(1): p. 222-230.3.Anderson, T., Fracture Mechanics-Fundamentals and Applications, NASA STI. 1991, Recon Tech. Rep. A, 92.4.Yoon, K.B., T.G. Park, and A. Saxena, Creep crack growth analysis of elliptic surface cracks in pressure vessels. International Journal of Pressure Vessels and Piping, 2003. 80(7-8): p. 465-479.5.Perl, M. and V. Bernshtein, Three-dimensional stress intensity factors for ring cracks and arrays of coplanar cracks emanating from the inner surface of a spherical pressure vessel. Engineering Fracture Mechanics, 2012. 94: p. 71-84.6.Lin, X. and R. Smith, Fatigue growth prediction of internal surface cracks in pressure vessels. 1998.7.Wasmer, K., K. Nikbin, and G. Webster, Creep crack initiation and growth in thick section steel pipes under internal pressure. International journal of pressure vessels and piping, 2003. 80(7-8): p. 489-498.8.Foletti, S., et al., Creep crack initiation and growth in 12% Cr-steel turbine disks. Gruppo Italiano Frattura. Convegno Nazionale IGF. Acta Fracturae, 2013. 22: p. 340.9.Si, J., F.-Z. Xuan, and S.-T. Tu, A numerical creep analysis on the interaction of twin semi-elliptical cracks. International journal of pressure vessels and piping, 2008. 85(7): p. 459-467.10.Bergman, M., Stress intensity factors for circumferential surface cracks in pipes. Fatigue & fracture of engineering materials & structures, 1995. 18(10): p. 1155-1172.11.Budden, P., Validation of the high-temperature structural integrity procedure R5 by component testing. International journal of pressure vessels and piping, 2003. 80(7-8): p. 517-526.12.Kitamura, T., et al., Fracture nanomechanics. 2016: CRC Press.13.Kumar, V., M. German, and C.F. Shih, Engineering approach for elastic-plastic fracture analysis. 1981, General Electric Co.14.Chapuliot, S. and F. Curtit, Experimental determination of the C∗ parameter for a plate with a surface crack and submitted to bending. International journal of pressure vessels and piping, 2001. 78(11-12): p. 875-880.15.Wang, J., et al., Improving creep properties of 7075 aluminum alloy by laser shock peening. Surface and Coatings Technology, 2018. 349: p. 725-735.16.Lin, Y., et al., A new creep constitutive model for 7075 aluminum alloy under elevated temperatures. Journal of materials engineering and performance, 2014. 23(12): p. 4350-4357.17.Jahromi, S.J., Creep behavior of spray-cast 7XXX aluminum alloy. Materials & design, 2002. 23(2): p. 169-172.18.Heimerl, G.J. and J.E. Inge, Tensile properties of 7075-T6 and 2024-T3 aluminum-alloy sheet heated at uniform temperature rates under constant load. 1955.19.Mahathaninwong, N., et al., Creep rupture behavior of semi-solid cast 7075-T6 Al alloy. Materials Science and Engineering: A, 2012. 556: p. 107-113.20.Fritz, L.J. and W. Koster, Tensile and creep rupture properties of (16) uncoated and (2) coated engineering alloys at elevated temperatures. 1977.21.Larson, F.R. and J. Miller, A time-temperature relationship for rupture and creep stresses. Transactions of the American Society of Mechanical Engineers, 1952. 74(5): p. 765-771.22.Orr, R.L., O.D. Sherby, and J.E. Dorn, Correlations of rupture data for metals at elevated temperatures. 1953, Institue of Engineering Research, Univ. of Calif., Berkeley.23.Manson, S.S. and A.M. Haferd, A linear time-temperature relation for extrapolation of creep and stress-rupture data. 1953.24.Ensign, C. and S. Manson, A specialized model for analysis of creep rupture data by the minimum commitment, station-function approach. 1971.25.Morovat, M.A., et al., Creep properties of ASTM A992 steel at elevated temperatures. Advanced Materials Research, 2012. 446: p. 786-792.26.Moss, D.R., Pressure vessel design manual. 2004: Elsevier.27.Budynas, R.G., Advanced strength and applied stress analysis. (No Title), 1977.28.Viswanathan, R., Damage mechanisms and life assessment of high temperature components. 1989: ASM international.29.Boyle, J.T. and J. Spence, Stress analysis for creep. 2013: Elsevier.30.ASTMSTP905, S.V. Creep crack growth under non-steady-state conditions. in Fracture mechanics: seventeenth volume: Seventeenth National Symposium on Fracture Mechanics on Fracture Mechanics sponsored ASTM Committee E-24 on Fracture Testing, Albany, New York, 7-9 August 1984. 1986. Astm Intl.31.Cocks, A. and M. Ashby, Intergranular fracture during power-law creep under multiaxial stresses. Metal science, 1980. 14(8-9): p. 395-402.32.Smith, D. and G. Webster, Fracture mechanics interpretation of multiple-creep cracking using damage-mechanics concepts. Materials science and technology, 1985. 1(5): p. 366-372.33.Tang, K., H. Wu, and F. Berto, Fatigue data interpretation of 7075-T6 Al sheets by energy density factor in a dual scale model. Theoretical and Applied Fracture Mechanics, 2015. 79: p. 98-104.34.Jin, J.-M., The finite element method in electromagnetics. 2015: John Wiley & Sons.35.Yousefi, A.M., et al., Web crippling strength of cold-formed stainless-steel lipped channels with web perforations under end-two-flange loading. Advances in Structural Engineering, 2017. 20(12): p. 1845-1863.36.Bray, J.W., Properties and selection: Nonferrous alloys and special purpose materials. ASM Metals handbook, 1990. 92.37.نصر, و., روی ترک های سطحی غیر محوری در جدار مخزن استوانهای شکل J بررسی انتگرال in پايان نامه کارشناسی ارشد. 1393, دانشگاه فردوسی مشهد.38.Manual, A.U., Version 6.16. ABAQUS Inc, 2017.39.Wen, J.-F., et al., Creep fracture mechanics parameters for internal axial surface cracks in pressurized cylinders and creep crack growth analysis. International journal of pressure vessels and piping, 2011. 88(11-12): p. 452-464.Last name: Mojarrad Heydarlo Name: FaridThesis title: Creep crack growth under torsional loading and temperature gradient in an AL7075-T6 cylindrical vesselSupervisor: Dr. Farid Vakili-TahamiAdvisor: Dr. Hassan BiglariDegree: Master of Sciences Major: Mechanical EngineeringUniversity: University of TabrizFaculty: Mechanical Engineering Graduation date: Pages: 67Keywords: Creep crack growth, Torsional, Elliptical crack, Multiple cracks interaction, C* Aluminum 7075-T6 Abstract:In recent years, due to the wide application of metal materials and the importance of safety analysis and increasing the life of mechanical components under various loadings, including torsional, bending and compressive loading, it has been the focus of many researchers. Among the applications of aluminum alloys in military and civilian industries, we can mention aircraft body, rocket body, space station cabin and shipbuilding. In most cases, the body of these structures suffers from cracks due to the production process or long use. As a result, it is necessary to pay attention to the creep behavior of the crack in the body of these structures, because the factor of very high local stress and high temperature with a strong gradient will cause the rapid growth of the crack in the body. Also, due to the fact that the tank structure of most of the structures are exposed to twisting and pressure and high temperature gradient, checking their mechanical properties in terms of creep behavior is of great importance. In this study, the desired geometry was first simulated in Abaqus software, and then the desired crack geometry was created on the cylinder, and the crack growth rate was estimated using the Continuous Medium Fracture Mechanics (CDM) method. Finally, the influence of various geometric or material parameters such as internal pressure, torsion, radius and thickness of the cylinder wall, depth and length of the crack and the presence of temperature gradient along the cylinder wall on the C* parameter and the result of the crack growth rate were investigated and the results were presented in the format Various charts are provided.
OTHER VARIANT TITLES
Variant Title
Creep crack growth under torsional loading and temperature gradient in an AL7075-T6 cylindrical vessel