تبریز:دانشگاه تبریز، دانشکده ریاضی، گروه ریاضی کاربردی
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
۸۵ص
NOTES PERTAINING TO PUBLICATION, DISTRIBUTION, ETC.
Text of Note
چاپی
DISSERTATION (THESIS) NOTE
Dissertation or thesis details and type of degree
کارشناسی ارشد
Discipline of degree
ریاضی کاربردی
Date of degree
۱۳۸۳/۰۴/۲۵
Body granting the degree
تبریز:دانشگاه تبریز، دانشکده ریاضی، گروه ریاضی کاربردی
SUMMARY OR ABSTRACT
Text of Note
در این نوشتار، خاصیتهای همگرایی محلی الگوریتمهای نقطه درونی اولیه ثانویه برای مینیممسازی تابع هدف غیرمحدب غیر خطی با قیدهای تساوی خطی و نامساوی کلی را بررسی میکنیم .همگرایی این الگوریتمQ - زبر خطی است و به صورت مؤلفهوار اتفاق میافتد
Text of Note
249] and indicate that the details of its inner minimization are irrelevant in the asymptotics, except for its accuracy requirements-superlinear and may be chosen arbitrarily close to quadratic. Furthermore, this rate applies componentwise. These results hold in particular for the method described [A.R.Conn, N.I.M.Gould, Orban, and P. L. Toint, Math. Program. Ser. B,87 (2000), pp. 215-barrier merit function is approximately minimized subject to satisfying the linear equality constraints, and an outer iteration that specifies both the decrease in the barrier parameter and the level of accuracy for the inner minimization. Under nondegeneracy assumptions, it is shown that, asymptotically ,for each value of the barrier parameter, solving a single primal dual linear system is enough to produce an iterate that already matches the barrier subproblem accuracy requirements.The asymptotic rate of convergence of the resulting algorithm is Q-dual interior point methods are analyzed.These methods are designed to minimize a nonlinear, nonconvex, objective function subject to linear equality constrainets and general inequalities.They involve an inner iteration in which the log-The local convergence properties of a class of primal