بررسی خواص نوری نانوساختارهای دی کلکوجناید فلزات واسطه دوبعدی
Parallel Title Proper
Investigation of Optical Properties of Two-dimensional Transition Metal Dichalcogenide Nanostructures
First Statement of Responsibility
/جواد فولادی اسکوئی
.PUBLICATION, DISTRIBUTION, ETC
Name of Publisher, Distributor, etc.
: فیزیک فیزیک کاربردی و ستاره شناسی
Date of Publication, Distribution, etc.
، ۱۳۹۸
Name of Manufacturer
، میرزائی
PHYSICAL DESCRIPTION
Specific Material Designation and Extent of Item
۱۱۷ص
NOTES PERTAINING TO PUBLICATION, DISTRIBUTION, ETC.
Text of Note
چاپی - الکترونیکی
DISSERTATION (THESIS) NOTE
Dissertation or thesis details and type of degree
دکتری
Discipline of degree
فوتونیک
Date of degree
۱۳۹۸/۰۶/۱۶
Body granting the degree
تبریز
SUMMARY OR ABSTRACT
Text of Note
اخیرا، نانو ساختارهای مربوط به صفحات مواد دوبعدی با ضخامت اتمی) از قبیل گرافین، دی کلکوجنایدهای فلزات واسطه، نیترید بورن شش گوشی، فسفرین و ( ...بعنوان مواد با ابعاد پایین با خواص منحصر بفرد الکترونیکی، نوری، مکانیکی، شیمیایی و حرارتی ظهور پیدا کرده اند .این دسته از نانوساختارهای نوین طیف وسیعی از کاربردهای امید بخشی را در زمینه های ادوات الکترونیکی و فوتونیکی ، حسگرها، نمایشگر ها، ذخیره سازی انرژی، تصویر برداری، درمان سرطان و فناوری اطلاعات کوانتومی را پوشش می دهند
Text of Note
Recently, nanostructures of atomically-thin two-dimensional sheets (such as graphene, transition metal dichalcogenides, hexagonal boron nitride, phosphorene and etc.) are emerging as low dimensional materials with extraordinary electronic, optical, mechanical, chemical and thermal properties. Theses types of novel nanostructures covering a wide spectrum of promising applications in photonic and electronic devices, sensors, displays, energy storage, imaging, cancer therapy and quantum information technology. In this thesis, linear and nonlinear optical properties of novel semiconducting nanostructure quantum dots based on two-dimensional transition metal dichalcogenides are investigated with emphasizing the strong spin and valley dependent excitonic effects, which have the ability in order to utilize in novel photonic and optoelectronic systems. To this end by using the fermionic Dirac hamiltonian, a new modeling for quantum dots of two-dimensional transition metal dichalcogenides is proposed based on harmonic oscillator potentioal. Quantum confinement effects on excitons in four types of monolayer TMDC quantum dots are investigated in the frame work of massive Dirac fermion model. A giant spin-valley coupling of the TMDC QDs obtained, which are larger than that of monolayered TMDC sheets and in consistent with the recent experimental measurements. Spin dependent band gaps obatined from model are in acceptable degree of agreement with experimental data. Also, binding energy of excitons in this quantum dots shows a significant enhanchement over their two-dimensional state and are in the range of . The large exciton binding energy in TMDC QDs ensuring that the excitons are more stable than their 2D counterparts even at room temperature which indicates that the many-body interactions play a significant role in the investigation of the optical properties of these novel nanostructures. The estimated oscillator strength and a radiative lifetime of excitons are strongly size-dependent which indicate a very large oscillator strength enhancement and ultrafast radiative annihilation of excitons varies from femtosecond to picosecond. In order to investigate the nonlinear optical properties of these semiconducting nanostructure quantum dots, the second harmonic generation, which is as one of the most important second-order nonlinear effects, is studied in QDs and shows quantum confinement enhanced tunable spin-valley dependent excitonic SHG. In the experimental part of the present thesis, the growth feasibility and characterization of molybdenum disulfide Quantum Dots by using a chemical vapor deposition method is investigated
PARALLEL TITLE PROPER
Parallel Title
Investigation of Optical Properties of Two-dimensional Transition Metal Dichalcogenide Nanostructures